Suppr超能文献

通过使用进化算法进行随机模拟优化育种计划设计。

Optimization of breeding program design through stochastic simulation with evolutionary algorithms.

作者信息

Hassanpour Azadeh, Geibel Johannes, Simianer Henner, Rohde Antje, Pook Torsten

机构信息

Department of Animal Sciences, Animal Breeding and Genetics Group, University of Goettingen, Albrecht-Thaer-Weg 3, Goettingen 37075, Germany.

Center for Integrated Breeding Research, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany.

出版信息

G3 (Bethesda). 2025 Jan 8;15(1). doi: 10.1093/g3journal/jkae248.

Abstract

The effective planning and allocation of resources in modern breeding programs is a complex task. Breeding program design and operational management have a major impact on the success of a breeding program and changing parameters such as the number of selected/phenotyped/genotyped individuals in the breeding program will impact genetic gain, genetic diversity, and costs. As a result, careful assessment and balancing of design parameters is crucial, taking into account the trade-offs between different breeding goals and associated costs. In a previous study, we optimized the resource allocation strategy in a dairy cattle breeding scheme via the combination of stochastic simulations and kernel regression, aiming to maximize a target function containing genetic gain and the inbreeding rate under a given budget. However, the high number of simulations required when using the proposed kernel regression method to optimize a breeding program with many parameters weakens the effectiveness of such a method. In this work, we are proposing an optimization framework that builds on the concepts of kernel regression but additionally makes use of an evolutionary algorithm to allow for a more effective and general optimization. The key idea is to consider a set of potential parameter settings of the breeding program, evaluate their performance based on stochastic simulations, and use these outputs to derive new parameter settings to test in an iterative procedure. The evolutionary algorithm was implemented in a Snakemake workflow management system to allow for efficient scaling on large distributed computing platforms. The algorithm achieved stabilization around the same optimum with a massively reduced number of simulations. Thereby, the incorporation of class variables and accounting for a higher number of parameters in the optimization framework leads to substantially reduced computing time and better scaling for the desired optimization of a breeding program.

摘要

在现代育种计划中,有效规划和分配资源是一项复杂的任务。育种计划的设计和运营管理对育种计划的成功有着重大影响,而改变育种计划中选定/表型鉴定/基因分型个体的数量等参数将影响遗传增益、遗传多样性和成本。因此,仔细评估和平衡设计参数至关重要,要考虑不同育种目标与相关成本之间的权衡。在之前的一项研究中,我们通过结合随机模拟和核回归优化了奶牛育种方案中的资源分配策略,目标是在给定预算下最大化包含遗传增益和近亲繁殖率的目标函数。然而,使用所提出的核回归方法优化具有许多参数的育种计划时所需的大量模拟削弱了这种方法的有效性。在这项工作中,我们提出了一个优化框架,该框架基于核回归的概念构建,但还利用了进化算法以实现更有效和通用的优化。关键思想是考虑育种计划的一组潜在参数设置,基于随机模拟评估它们的性能,并使用这些输出得出新的参数设置以便在迭代过程中进行测试。进化算法在Snakemake工作流管理系统中实现,以便在大型分布式计算平台上实现高效扩展。该算法在大幅减少模拟次数的情况下在相同的最优值附近实现了稳定。因此,在优化框架中纳入分类变量并考虑更多参数会导致计算时间大幅减少,并且在对育种计划进行所需优化时具有更好的扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66e7/11708219/3eec81441831/jkae248f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验