Jheronimus Academy of Data Science, 's-Hertogenbosch, the Netherlands.
Utrecht University, Utrecht, the Netherlands.
PLoS One. 2024 Nov 4;19(11):e0309318. doi: 10.1371/journal.pone.0309318. eCollection 2024.
Recent calls to take up data science either revolve around the superior predictive performance associated with machine learning or the potential of data science techniques for exploratory data analysis. Many believe that these strengths come at the cost of explanatory insights, which form the basis for theorization. In this paper, we show that this trade-off is false. When used as a part of a full research process, including inductive, deductive and abductive steps, machine learning can offer explanatory insights and provide a solid basis for theorization. We present a systematic five-step theory-building and theory-testing cycle that consists of: 1. Element identification (reduction); 2. Exploratory analysis (induction); 3. Hypothesis development (retroduction); 4. Hypothesis testing (deduction); and 5. Theorization (abduction). We demonstrate the usefulness of this approach, which we refer to as co-duction, in a vignette where we study firm growth with real-world observational data.
最近,人们呼吁采用数据科学,这要么是因为机器学习具有优越的预测性能,要么是因为数据科学技术具有探索性数据分析的潜力。许多人认为,这些优势是以解释性见解为代价的,而解释性见解是理论化的基础。在本文中,我们表明这种权衡是错误的。当将机器学习作为完整研究过程的一部分,包括归纳、演绎和溯因步骤来使用时,它可以提供解释性见解,并为理论化提供坚实的基础。我们提出了一个系统的五步理论构建和理论检验循环,包括:1. 要素识别(简化);2. 探索性分析(归纳);3. 假设开发(回溯);4. 假设检验(演绎);5. 理论化(溯因)。我们在一个案例研究中展示了这种方法的有用性,该案例研究使用真实的观察数据研究了企业增长。