Lyu Peifen, Matusalem Filipe, Deniz Ece, Rocha Alexandre Reily, Leite Marina S
Department of Materials Science and Engineering, University of California - Davis, Davis, California 95616, United States.
Instituto de Física Teórica, São Paulo State University (UNESP), São Paulo 01140-170, Brazil.
ACS Appl Mater Interfaces. 2024 Nov 13;16(45):62860-62870. doi: 10.1021/acsami.4c11397. Epub 2024 Nov 4.
Metal alloy nanostructures represent a promising platform for next-generation nanophotonic devices, surpassing the limitations of pure metals by offering additional "buttons" for tailoring their optical properties by compositional variations. While alloyed nanoparticles hold great potential, their scalability and underexplored optical behavior still limit their application. Here, we establish a systematic approach to quantifying the unique optical behavior of the AgAuPd ternary system while providing a direct comparison with its pure constituent metals. Computationally, we analyze their electronic structure and uncover the transition of Pd d states to Pd/Ag hybridized s states in the bulk form, explaining the similar optical properties observed between Pd and AgAuPd. Experimentally, we fabricate pure metal and fully alloyed nanoparticles through solid-state dewetting, a scalable method. During the process, we trace the optical transition in the systems from the initial thin film stage to the final nanoparticle stage with in situ ellipsometry. We reveal the interplay between optical properties influenced by chemical interdiffusion and localized surface plasmon resonance arising from morphological changes with ex situ surface characterizations. Additionally, we analytically implement a metallic layer derived from the ternary system in a trilayer device, resulting in a single-time and irreversible color filter, to demonstrate an application encompassing a lithography-free and cost-effective route for nanophotonic devices.
金属合金纳米结构是下一代纳米光子器件的一个有前途的平台,它通过成分变化提供额外的“调控手段”来调整其光学特性,从而超越了纯金属的局限性。虽然合金化纳米粒子具有巨大潜力,但其可扩展性以及尚未充分探索的光学行为仍然限制了它们的应用。在此,我们建立了一种系统方法来量化AgAuPd三元体系独特的光学行为,同时与它的纯组分金属进行直接比较。通过计算,我们分析了它们的电子结构,并揭示了块状形式下Pd的d态向Pd/Ag杂化s态的转变,解释了在Pd和AgAuPd之间观察到的相似光学特性。在实验方面,我们通过固态去湿这一可扩展方法制备了纯金属和完全合金化的纳米粒子。在此过程中,我们利用原位椭偏仪追踪了系统从初始薄膜阶段到最终纳米粒子阶段的光学转变。通过非原位表面表征,我们揭示了受化学互扩散影响的光学特性与由形态变化引起的局域表面等离子体共振之间的相互作用。此外,我们在三层器件中分析性地应用了源自三元体系的金属层,得到了一种一次性且不可逆的滤色器,以此展示一种涵盖无光刻且经济高效的纳米光子器件制造途径的应用。