Ko Joo Hwan, Kim So Hee, Kim Min Seok, Heo Se-Yeon, Yoo Young Jin, Kim Yeong Jae, Lee Heon, Song Young Min
School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Korea Institute of Ceramic Engineering and Technology, Ceramics Test-Bed Center, 3321 Gyeongchung-daero, Sindun-myeon, Icheon-si, Gyeonggi-do 17303, Republic of Korea.
ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44419-44428. doi: 10.1021/acsami.2c12131. Epub 2022 Sep 22.
Optical losses in photovoltaic (PV) systems cause nonradiative recombination or incomplete absorption of incident light, hindering the attainment of high energy conversion efficiency. The surface of the PV cells is encapsulated to not only protect the cell but also control the transmission properties of the incident light to promote maximum conversion. Despite many advances in elaborately designed photonic structures for light harvesting, the complicated process and sophisticated patterning highly diminish the cost-effectiveness and further limit the mass production on a large scale. Here, we propose a robust/comprehensive strategy based on the hybrid disordered photonic structure, implementing multifaceted light harvesting with an affordable/scalable fabrication method. The spatially segmented structures include (i) nanostructures in the active area for antireflection and (ii) microstructures in the inactive edge area for redirecting the incident light into the active area. A lithography-free hybrid disordered structure fabricated by the thermal dewetting method is a facile approach to create a large-area photonic structure with hyperuniformity over the entire area. Based on the experimentally realized nano-/microstructures, we designed a computational model and performed an analytical calculation to confirm the light behavior and performance enhancement. Particularly, the suggested structure is manufactured by the elastomeric stamps method, which is affordable and profitable for mass production. The produced hybrid structure integrated with the multijunction solar cell presented an improved efficiency from 28.0 to 29.6% by 1.06 times.
光伏(PV)系统中的光学损耗会导致非辐射复合或入射光吸收不完全,从而阻碍高能量转换效率的实现。光伏电池的表面被封装起来,不仅是为了保护电池,也是为了控制入射光的传输特性,以促进最大程度的转换。尽管在精心设计的用于光捕获的光子结构方面取得了许多进展,但复杂的工艺和精细的图案化极大地降低了成本效益,并进一步限制了大规模的批量生产。在此,我们提出了一种基于混合无序光子结构的稳健/综合策略,采用一种经济实惠/可扩展的制造方法实现多方面的光捕获。空间分段结构包括:(i)有源区域中的纳米结构用于抗反射,以及(ii)非有源边缘区域中的微结构用于将入射光重定向到有源区域。通过热去湿方法制造的无光刻混合无序结构是一种在整个区域创建具有超均匀性的大面积光子结构的简便方法。基于实验实现的纳米/微结构,我们设计了一个计算模型并进行了分析计算,以确认光的行为和性能提升。特别地,所建议的结构是通过弹性印章方法制造的,这种方法对于批量生产来说既经济又有利可图。与多结太阳能电池集成的所制备的混合结构的效率从28.0%提高到29.6%,提高了1.06倍。