Department of Computer Science & IT, University of Lakki Marwat, Lakki Marwat, KPK, 28420, Pakistan.
School of Computing Sciences, Fachhochschule Institute of Applied Sciences and Technology, Haripur, KPK, Pakistan.
Sci Rep. 2024 Nov 4;14(1):26657. doi: 10.1038/s41598-024-76891-z.
Vaccine acceptance is a crucial component of a viable immunization program in healthcare system, yet the disparities in new and existing vaccination adoption rates prevail across regions. Disparities in the rate of vaccine acceptance result in low immunization coverage and slow uptake of newly introduced vaccines. This research presents an innovative AI-driven predictive model, designed to accurately forecast vaccine acceptance within immunization programs, while providing high interpretability. Primarily, the contribution of this study is to classify vaccine acceptability into Low, Medium, Partial High, and High categories. Secondly, this study implements the Feature Importance method to make the model highly interpretable for healthcare providers. Thirdly, our findings highlight the impact of demographic and socio-demographic factors on vaccine acceptance, providing valuable insights for policymakers to improve immunization rates. A sample dataset containing 7150 data records with 31 demographic and socioeconomic attributes from PDHS (2017-2018) is used in this paper. Using the LightGBM algorithm, the proposed model constructed on the basis of different machine-learning procedures achieved 98% accuracy to accurately predict the acceptability of vaccines included in the immunization program. The association rules suggest that higher SES, region, parents' occupation, and mother's education have an association with vaccine acceptability.
疫苗接种的接受程度是医疗保健系统中可行免疫计划的关键组成部分,但新的和现有的疫苗接种采用率在各地区之间存在差异。疫苗接种接受率的差异导致免疫覆盖率低,新引入的疫苗接种速度缓慢。本研究提出了一种创新的人工智能驱动的预测模型,旨在准确预测免疫计划中的疫苗接种接受程度,同时提供高度可解释性。该研究的主要贡献在于将疫苗可接受性分为低、中、部分高和高四类。其次,本研究实施了特征重要性方法,使模型对医疗保健提供者具有高度可解释性。第三,我们的研究结果强调了人口统计和社会人口因素对疫苗接种接受程度的影响,为政策制定者提供了有价值的见解,以提高免疫接种率。本文使用了 PDHS(2017-2018 年)中包含 7150 条记录和 31 个人口统计和社会经济属性的样本数据集。基于不同的机器学习程序构建的 LightGBM 算法所提出的模型,其准确性达到 98%,可以准确预测免疫计划中包含的疫苗的可接受性。关联规则表明,较高的 SES、地区、父母的职业和母亲的教育水平与疫苗可接受性有关。