School of Industrial Engineering, Purdue University, 315 Grant St, West Lafayette, IN 47907, USA.
Indiana University School of Medicine, Department of Family Medicine, 1110 W. Michigan St, LO 200, Indianapolis, IN 46202, USA.
Int J Med Inform. 2022 Jul;163:104778. doi: 10.1016/j.ijmedinf.2022.104778. Epub 2022 Apr 26.
Pneumonia is the top communicable cause of death worldwide. Accurate prognostication of patient severity with Community Acquired Pneumonia (CAP) allows better patient care and hospital management. The Pneumonia Severity Index (PSI) was developed in 1997 as a tool to guide clinical practice by stratifying the severity of patients with CAP. While the PSI has been evaluated against other clinical stratification tools, it has not been evaluated against multiple classic machine learning classifiers in various metrics over large sample size.
In this paper, we evaluated and compared the prediction performance of nine classic machine learning classifiers with PSI over 34,720 adult (age 18+) patient records collected from 749 hospitals from 2009 to 2018 in the United States on Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) and Average Precision (Precision-Recall AUC).
Machine learning classifiers, such as Random Forest, provided a statistically highly(p < 0.001) significant improvement (∼33% in PR AUC and ∼6% in ROC AUC) compared to PSI and required only 7 input values (compared to 20 parameters used in PSI).
Because of its ease of use, PSI remains a very strong clinical decision tool, but machine learning classifiers can provide better prediction accuracy performance. Comparing prediction performance across multiple metrics such as PR AUC, instead of ROC AUC alone can provide additional insight.
肺炎是全球导致死亡的首要传染病病因。准确预测社区获得性肺炎(CAP)患者的严重程度可以改善患者的护理和医院管理。肺炎严重指数(PSI)于 1997 年开发,是一种通过对 CAP 患者进行严重程度分层来指导临床实践的工具。尽管 PSI 已经针对其他临床分层工具进行了评估,但它尚未针对多种经典机器学习分类器在不同指标和大数据量上进行评估。
在本文中,我们评估并比较了 PSI 与九种经典机器学习分类器在 2009 年至 2018 年期间从美国 749 家医院收集的 34720 名成年(年龄≥18 岁)患者记录上的预测性能,使用接收者操作特征(ROC)曲线下面积(AUC)和平均精度(精度-召回 AUC)进行评估。
机器学习分类器,如随机森林,与 PSI 相比,提供了统计学上高度显著的(p<0.001)改进(PR AUC 提高约 33%,ROC AUC 提高约 6%),且仅需要 7 个输入值(而 PSI 需要 20 个参数)。
由于其易于使用,PSI 仍然是一种非常强大的临床决策工具,但机器学习分类器可以提供更好的预测准确性性能。比较多个指标(如 PR AUC)的预测性能,而不仅仅是 ROC AUC,可提供更多的见解。