Suppr超能文献

使用深度迁移学习从胸部X光片对肺部疾病进行分类。

Classification of pulmonary diseases from chest radiographs using deep transfer learning.

作者信息

Shamas Muneeba, Tauseef Huma, Ahmad Ashfaq, Raza Ali, Ghadi Yazeed Yasin, Mamyrbayev Orken, Momynzhanova Kymbat, Alahmadi Tahani Jaser

机构信息

Department of Computer Science, Lahore College for Women University, Lahore, Pakistan.

Department of Computer Science, MY University, Islamabad, Pakistan.

出版信息

PLoS One. 2025 Mar 17;20(3):e0316929. doi: 10.1371/journal.pone.0316929. eCollection 2025.

Abstract

Pulmonary diseases are the leading causes of disabilities and deaths worldwide. Early diagnosis of pulmonary diseases can reduce the fatality rate. Chest radiographs are commonly used to diagnose pulmonary diseases. In clinical practice, diagnosing pulmonary diseases using chest radiographs is challenging due to Overlapping and complex anatomical Structures, variability in radiographs, and their quality. The availability of a medical specialist with extensive professional experience is profoundly required. With the use of Convolutional Neural Networks in the medical field, diagnosis can be improved by automatically detecting and classifying these diseases. This paper has explored the effectiveness of Convolutional Neural Networks and transfer learning to improve the predictive outcomes of fifteen different pulmonary diseases using chest radiographs. Our proposed deep transfer learning-based computational model achieved promising results as compared to existing state-of-the-art methods. Our model reported an overall specificity of 97.92%, a sensitivity of 97.30%, a precision of 97.94%, and an Area under the Curve of 97.61%. It has been observed that the promising results of our proposed model will be valuable tool for practitioners in decision-making and efficiently diagnosing various pulmonary diseases.

摘要

肺部疾病是全球致残和死亡的主要原因。肺部疾病的早期诊断可以降低死亡率。胸部X光片常用于诊断肺部疾病。在临床实践中,由于解剖结构重叠且复杂、X光片存在变异性及其质量问题,使用胸部X光片诊断肺部疾病具有挑战性。这就迫切需要有经验丰富的医学专家。随着卷积神经网络在医学领域的应用,可以通过自动检测和分类这些疾病来改善诊断。本文探讨了卷积神经网络和迁移学习在使用胸部X光片改善15种不同肺部疾病预测结果方面的有效性。与现有的最先进方法相比,我们提出的基于深度迁移学习的计算模型取得了有前景的结果。我们的模型总体特异性为97.92%,灵敏度为97.30%,精确度为97.94%,曲线下面积为97.61%。据观察,我们提出的模型所取得的有前景的结果将成为从业者进行决策和有效诊断各种肺部疾病的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec91/11913265/972ed9c48494/pone.0316929.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验