Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India.
Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India.
BMC Plant Biol. 2024 Nov 5;24(1):1044. doi: 10.1186/s12870-024-05749-3.
Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic underpinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) population was developed and evaluated for five seasons at two locations for three consecutive years (2018-19, 2019-20 and 2020-21) under drought stress and normal environments.
Phenotyping data of drought tolerance related traits, combined with the high-quality 10,556 polymorphic SNPs, were used to perform multi-locus model genome-wide association study (GWAS) analysis. We identified 37 significant marker-trait associations (MTAs) (Bonferroni-corrected) accounting, 0.91- 9.82% of the phenotypic variance. Intriguingly, 26 significant MTAs overlap on four chromosomes (Ah03, Ah07, Ah10 and Ah18) (harboring 70% of MTAs), indicating genomic hotspot regions governing drought tolerance traits. Furthermore, important candidate genes associated with leaf senescence (NAC transcription factor), flowering (B3 domain-containing transcription factor, Ulp1 protease family, and Ankyrin repeat-containing protein), involved in chlorophyll biosynthesis (FAR1 DNA-binding domain protein), stomatal regulation (Rop guanine nucleotide exchange factor; Galacturonosyltransferases), and associated with yield traits (Fasciclin-like arabinogalactan protein 11 and Fasciclin-like arabinogalactan protein 21) were found in the vicinity of significant MTAs genomic regions.
The findings of our investigation have the potential to provide a basis for significant MTAs validation, gene discovery and development of functional markers, which could be employed in genomics-assisted breeding to develop climate-resilient groundnut varieties.
落花生主要生长在全球半干旱热带(SAT)地区,那里存在干旱等非生物胁迫。然而,在探索耐旱性的遗传和基因组基础方面存在一个主要的研究空白。在这项研究中,开发了一个多亲本高级世代互交(MAGIC)群体,并在 2018-19、2019-20 和 2020-21 三年的五个季节在两个地点的干旱和正常环境下进行了评估。
与耐旱性相关性状的表型数据,结合高质量的 10556 个多态性 SNP,用于进行多基因座模型全基因组关联研究(GWAS)分析。我们确定了 37 个显著的标记-性状关联(MTA)(Bonferroni 校正),占表型方差的 0.91-9.82%。有趣的是,26 个显著的 MTA 重叠在四个染色体(Ah03、Ah07、Ah10 和 Ah18)上(占 MTA 的 70%),表明存在控制耐旱性性状的基因组热点区域。此外,与叶片衰老(NAC 转录因子)、开花(B3 结构域包含转录因子、Ulp1 蛋白酶家族和锚蛋白重复蛋白)、叶绿素生物合成(FAR1 DNA 结合域蛋白)、气孔调节(Rop 鸟苷酸交换因子;半乳糖基转移酶)和与产量性状相关(纤维粘连蛋白样阿拉伯半乳聚糖蛋白 11 和纤维粘连蛋白样阿拉伯半乳聚糖蛋白 21)的重要候选基因在显著 MTA 基因组区域附近被发现。
我们研究的结果有可能为显著 MTA 的验证、基因发现和功能标记的开发提供基础,这些标记可用于基因组辅助育种,以开发具有气候恢复力的落花生品种。