International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
College of Agriculture, University of Agricultural Sciences, Dharwad (UAS-D), Vijayapur 580005, India.
Genes (Basel). 2020 Dec 30;12(1):37. doi: 10.3390/genes12010037.
A deep understanding of the genetic control of drought tolerance and iron deficiency tolerance is essential to hasten the process of developing improved varieties with higher tolerance through genomics-assisted breeding. In this context, an improved genetic map with 1205 loci was developed spanning 2598.3 cM with an average 2.2 cM distance between loci in the recombinant inbred line (TAG 24 × ICGV 86031) population using high-density 58K single nucleotide polymorphism (SNP) "Axiom_" array. Quantitative trait locus (QTL) analysis was performed using extensive phenotyping data generated for 20 drought tolerance- and two iron deficiency tolerance-related traits from eight seasons (2004-2015) at two locations in India, one in Niger, and one in Senegal. The genome-wide QTL discovery analysis identified 19 major main-effect QTLs with 10.0-33.9% phenotypic variation explained (PVE) for drought tolerance- and iron deficiency tolerance- related traits. Major main-effect QTLs were detected for haulm weight (20.1% PVE), SCMR (soil plant analytical development (SPAD) chlorophyll meter reading, 22.4% PVE), and visual chlorosis rate (33.9% PVE). Several important candidate genes encoding glycosyl hydrolases; malate dehydrogenases; microtubule-associated proteins; and transcription factors such as MADS-box, basic helix-loop-helix (bHLH), NAM, ATAF, and CUC (NAC), and myeloblastosis (MYB) were identified underlying these QTL regions. The putative function of these genes indicated their possible involvement in plant growth, development of seed and pod, and photosynthesis under drought or iron deficiency conditions in groundnut. These genomic regions and candidate genes, after validation, may be useful to develop molecular markers for deploying genomics-assisted breeding for enhancing groundnut yield under drought stress and iron-deficient soil conditions.
深入了解耐旱性和缺铁耐性的遗传控制对于通过基因组辅助育种加速开发具有更高耐性的改良品种至关重要。在这种情况下,使用高密度 58K 单核苷酸多态性(SNP)“Axiom_”阵列,在重组自交系(TAG 24×ICGV 86031)群体中开发了一个具有 1205 个基因座的改良遗传图谱,跨度 2598.3cM,基因座之间的平均距离为 2.2cM。使用来自印度两个地点、尼日尔一个地点和塞内加尔一个地点的八个季节(2004-2015 年)生成的广泛表型数据,对 20 个耐旱性和两个缺铁耐性相关性状进行了数量性状基因座(QTL)分析。全基因组 QTL 发现分析确定了 19 个主要主效 QTL,对耐旱性和缺铁耐性相关性状的表型变异解释率(PVE)为 10.0-33.9%。主要主效 QTL 检测到茎重(20.1% PVE)、SCMR(土壤植物分析发展(SPAD)叶绿素计读数,22.4% PVE)和视觉黄化率(33.9% PVE)。鉴定出编码糖苷水解酶、苹果酸脱氢酶、微管相关蛋白的几个重要候选基因;以及转录因子,如 MADS 盒、碱性螺旋-环-螺旋(bHLH)、NAM、ATAF 和 CUC(NAC)和髓样细胞瘤(MYB),这些基因位于这些 QTL 区域之下。这些基因的假定功能表明它们可能参与花生在干旱或缺铁条件下的生长、种子和豆荚的发育以及光合作用。这些基因组区域和候选基因在验证后,可能有助于开发分子标记,用于部署基因组辅助育种,以提高花生在干旱胁迫和缺铁土壤条件下的产量。