Suppr超能文献

通过临床数据仓库对矫形植入设备进行自动化监测的可行性:Studio 研究。

Feasibility of automated surveillance of implantable devices in orthopaedics via clinical data warehouse: the Studio study.

机构信息

Health Ethics EA, Medecine Faculty, Tours University, Tours, F-37000, France.

Clinical Data Centre, CHRU Tours, Tours, F-37000, France.

出版信息

BMC Med Inform Decis Mak. 2024 Nov 4;24(1):324. doi: 10.1186/s12911-024-02697-8.

Abstract

BACKGROUND

Total hip, knee and shoulder arthroplasties (THKSA) are increasing due to expanding demands in ageing population. Material surveillance is important to prevent severe complications involving implantable medical devices (IMD) by taking appropriate preventive measures. Automating the analysis of patient and IMD features could benefit physicians and public health policies, allowing early issue detection and decision support. The study aimed to demonstrate the feasibility of automated cohorting of patients with a first arthroplasty in two hospital data warehouses (HDW) in France.

METHODS

The study included adult patients with an arthroplasty between 2010 and 2019 identified by 2 data sources: hospital discharge and pharmacy. Selection was based on the health insurance thesaurus of IMDs in the pharmacy database: 1,523 distinct IMD references for primary THSKA. In the hospital discharge database, 22 distinct procedures for native joint replacement allowing a matching between IMD and surgical procedure of each patient selected. A program to automate information extraction was implemented in the 1st hospital data warehouse using natural language processing (NLP) on pharmacy labels, then it was then applied to the 2nd hospital.

RESULTS

The e-cohort was built with a first arthroplasty for THKSA performed in 7,587 patients with a mean age of 67.4 years, and a sex ratio of 0.75. The cohort involved 4,113 hip, 2,630 knee and 844 shoulder surgical patients. Obesity, cardio-vascular diseases and hypertension were the most frequent medical conditions.

DISCUSSION

The implementation of an e-cohort for material surveillance will be easily workable over HDWs France wild. Using NLP as no international IMD mapping exists to study IMD, our approach aims to close the gap between conventional epidemiological cohorting tools and bigdata approach.

CONCLUSION

This pilot study demonstrated the feasibility of an e-cohort of orthopaedic devices using clinical data warehouses. The IMD and patient features could be studied with intra-hospital follow-up and will help analysing the infectious and unsealing complications.

摘要

背景

由于人口老龄化需求不断扩大,全髋关节、膝关节和肩关节置换术(THKSA)的数量不断增加。通过采取适当的预防措施,对植入式医疗器械(IMD)进行材料监测对于预防严重并发症非常重要。自动化分析患者和 IMD 特征可以使医生和公共卫生政策受益,从而更早地发现问题并提供决策支持。本研究旨在展示在法国两个医院数据仓库(HDW)中对首次接受关节置换术的患者进行自动分组的可行性。

方法

该研究纳入了通过两个数据源(医院出院记录和药房)识别的 2010 年至 2019 年期间接受关节置换术的成年患者:1. 药房数据库中的 IMD 健康保险词库中包含 1523 个不同的原发性 THSKA 用 IMD 参考编号;2. 医院出院记录数据库中包含 22 种不同的关节置换术,可对每个选定患者的 IMD 和手术程序进行匹配。在第一个医院数据仓库中,使用自然语言处理(NLP)对药房标签上的信息进行提取,实施了一个自动信息提取程序,然后将该程序应用于第二个医院。

结果

该电子队列由 7587 名首次接受 THKSA 关节置换术的患者组成,平均年龄为 67.4 岁,性别比为 0.75。该队列包括 4113 例髋关节、2630 例膝关节和 844 例肩关节手术患者。肥胖症、心血管疾病和高血压是最常见的疾病。

讨论

在法国的医院数据仓库中,建立一个用于材料监测的电子队列将很容易实现。由于没有国际 IMD 映射来研究 IMD,因此使用 NLP 作为工具,我们的方法旨在缩小传统流行病学队列工具和大数据方法之间的差距。

结论

这项试点研究证明了使用临床数据仓库构建骨科设备电子队列的可行性。可以通过院内随访研究 IMD 和患者特征,并帮助分析感染和未密封并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99af/11533334/819274c184c1/12911_2024_2697_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验