Suppr超能文献

基于机器学习的聚类分析确定了具有不同多组学特征和代谢模式的肥胖亚组。

Machine learning-based clustering identifies obesity subgroups with differential multi-omics profiles and metabolic patterns.

机构信息

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.

出版信息

Obesity (Silver Spring). 2024 Nov;32(11):2024-2034. doi: 10.1002/oby.24137.

Abstract

OBJECTIVE

Individuals living with obesity are differentially susceptible to cardiometabolic diseases. We hypothesized that an integrative multi-omics approach might improve identification of subgroups of individuals with obesity who have distinct cardiometabolic disease patterns.

METHODS

We performed machine learning-based, integrative unsupervised clustering to identify proteomics- and metabolomics-defined subpopulations of individuals living with obesity (BMI ≥ 30 kg/m), leveraging data from 243 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. Omics that contributed to the observed clusters were functionally characterized. We performed multivariate regression to assess whether the individuals in each cluster demonstrated differential patterns of cardiometabolic traits.

RESULTS

We identified two distinct clusters (iCluster1 and 2). iCluster2 had significantly higher average BMI values, fasting blood glucose, and inflammation. iCluster1 was associated with higher levels of total cholesterol and high-density lipoprotein cholesterol. Pathways mediating cell growth, lipogenesis, and energy expenditures were positively associated with iCluster1. Inflammatory response and insulin resistance pathways were positively associated with iCluster2.

CONCLUSIONS

Although the two identified clusters may represent progressive obesity-related pathologic processes measured at different stages, other mechanisms in combination could also underpin the identified clusters given no significant age difference between the comparative groups. For instance, clusters may reflect differences in dietary/behavioral patterns or differential rates of metabolic damage.

摘要

目的

肥胖人群易患心血管代谢疾病。我们假设,综合多组学方法可能会提高识别肥胖人群亚组的能力,这些亚组具有不同的心血管代谢疾病模式。

方法

我们利用来自动脉粥样硬化多民族研究(MESA)队列的 243 名个体的数据,采用基于机器学习的综合无监督聚类方法,识别出肥胖人群(BMI≥30kg/m)的蛋白质组学和代谢组学定义的亚群。对导致观察到的聚类的组学进行了功能特征描述。我们进行了多元回归分析,以评估每个聚类中的个体是否表现出不同的心血管代谢特征模式。

结果

我们确定了两个不同的聚类(iCluster1 和 2)。iCluster2 的平均 BMI 值、空腹血糖和炎症水平显著更高。iCluster1 与总胆固醇和高密度脂蛋白胆固醇水平较高相关。介导细胞生长、脂肪生成和能量消耗的途径与 iCluster1 呈正相关。炎症反应和胰岛素抵抗途径与 iCluster2 呈正相关。

结论

尽管这两个确定的聚类可能代表在不同阶段测量的肥胖相关病理过程的进展,但鉴于比较组之间没有显著的年龄差异,其他机制也可能支持所确定的聚类。例如,聚类可能反映了饮食/行为模式的差异或代谢损伤的不同速度。

相似文献

3
Interventions to prevent obesity in children aged 5 to 11 years old.预防 5 至 11 岁儿童肥胖的干预措施。
Cochrane Database Syst Rev. 2024 May 20;5(5):CD015328. doi: 10.1002/14651858.CD015328.pub2.
7
Effects of total fat intake on bodyweight in children.儿童总脂肪摄入量对体重的影响。
Cochrane Database Syst Rev. 2018 Jul 5;7(7):CD012960. doi: 10.1002/14651858.CD012960.pub2.
10
Nutritional interventions for survivors of childhood cancer.儿童癌症幸存者的营养干预措施。
Cochrane Database Syst Rev. 2016 Aug 22;2016(8):CD009678. doi: 10.1002/14651858.CD009678.pub2.

本文引用的文献

1
Evaluation and comparison of multi-omics data integration methods for cancer subtyping.癌症亚型的多组学数据整合方法的评估与比较。
PLoS Comput Biol. 2021 Aug 12;17(8):e1009224. doi: 10.1371/journal.pcbi.1009224. eCollection 2021 Aug.
2
Machine Learning to Identify Metabolic Subtypes of Obesity: A Multi-Center Study.机器学习识别肥胖的代谢亚型:一项多中心研究。
Front Endocrinol (Lausanne). 2021 Jul 14;12:713592. doi: 10.3389/fendo.2021.713592. eCollection 2021.
9
Obesity subtypes, related biomarkers & heterogeneity.肥胖亚型、相关生物标志物和异质性。
Indian J Med Res. 2020 Jan;151(1):11-21. doi: 10.4103/ijmr.IJMR_1768_17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验