Suppr超能文献

2019年印度尼西亚泥炭地极端火灾对城市空气质量和健康的灾难性影响。

Catastrophic impact of extreme 2019 Indonesian peatland fires on urban air quality and health.

作者信息

Grosvenor Mark J, Ardiyani Vissia, Wooster Martin J, Gillott Stefan, Green David C, Lestari Puji, Suri Wiranda

机构信息

Department of Geography, School of Global Affairs, King's College London, London, UK.

NERC National Centre for Earth Observation, King's College London, London, UK.

出版信息

Commun Earth Environ. 2024;5(1):649. doi: 10.1038/s43247-024-01813-w. Epub 2024 Nov 2.

Abstract

Tropical peatland fires generate substantial quantities of airborne fine particulate matter (PM) and in Indonesia are intensified during El Niño-related drought leading to severe air quality impacts affecting local and distant populations. Limited in-situ data often necessitates reliance on air quality models, like that of the Copernicus Atmosphere Monitoring Service, whose accuracy in extreme conditions is not fully understood. Here we demonstrate how a network of low-cost sensors around Palangka Raya, Central Kalimantan during the 2019 fire season, quantified extreme air quality and city-scale variability. The data indicates relatively strong model performance. Health impacts are substantial with estimates of over 1200 excess deaths in the Palangka Raya region, over 3200 across Central Kalimantan and more than 87,000 nationwide in 2019 due to fire-induced PM exposure. These findings highlight the need for urgent action to mitigate extreme fire events, including reducing fire use and landscape remediation to prevent peat fire ignition.

摘要

热带泥炭地火灾会产生大量空气中的细颗粒物(PM),在印度尼西亚,与厄尔尼诺相关的干旱期间火灾会加剧,导致严重的空气质量影响,波及当地和远方的人群。有限的现场数据常常需要依赖空气质量模型,比如哥白尼大气监测服务模型,但其在极端条件下的准确性尚未完全明确。在此,我们展示了2019年火灾季节期间,中加里曼丹省帕朗卡拉亚周围的低成本传感器网络如何量化极端空气质量和城市尺度的变化。数据表明模型表现相对强劲。健康影响巨大,据估计,2019年因火灾导致的PM暴露,帕朗卡拉亚地区有超过1200例额外死亡,中加里曼丹全省超过3200例,全国超过87000例。这些发现凸显了采取紧急行动减轻极端火灾事件的必要性,包括减少用火以及进行景观修复以防止泥炭火灾点火。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ea/11531407/17b08c820826/43247_2024_1813_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验