Suppr超能文献

基于不同活化程度的富锂层状氧化物阴极的软包电池热失控过程机理的对比研究

A comparative study on the thermal runaway process mechanism of a pouch cell based on Li-rich layered oxide cathodes with different activation degrees.

作者信息

Quan Wei, Liu Jinghao, Luo Jinhong, Dong Hangfan, Ren Zhimin, Li Guohua, Qi Xiaopeng, Su Zilong, Wang Jiantao

机构信息

China Automotive Battery Research Institute Co., Ltd No.11 Xingke Dong Street, Huairou District Beijing 101407 China

Grinm Group Corporation Limited (Grinm Group) No.2 Xinjiekou Wai Street, Xicheng District Beijing 100088 China.

出版信息

RSC Adv. 2024 Nov 4;14(47):35074-35080. doi: 10.1039/d4ra06355d. eCollection 2024 Oct 29.

Abstract

Li-rich layered oxide (LLO) is regarded as one of the most promising candidates for the next-generation batteries. At present, most of the research studies are focusing on the normal electrochemical properties of LLOs, while safety issues of the cells are neglected. To address this problem, this article systematically investigates the thermal runaway (TR) process of the pouch cell based on LLOs and elucidates how different activation degrees influence the thermal stability of the cathode material and cell, through various thermal analysis methods. Results prove that for the cell with higher activation degrees, more vulnerable solid electrolyte interfaces (SEI) are formed, leading to the occurrence of a self-heat process at lower temperatures. Then, more exothermic reactions are strengthened due to the weakened stability of the cathode material, releasing more heat and triggering TR processes at lower temperatures. Finally, during the period of uncontrolled TR, more oxidative O is released, responsible for the intensified exothermic redox reactions. Therefore, moderate activation of LLOs should be a reasonable and practical application strategy, considering the balance between the high energy density and safety of the cells.

摘要

富锂层状氧化物(LLO)被认为是下一代电池最有前途的候选材料之一。目前,大多数研究都集中在LLO的常规电化学性能上,而电池的安全问题却被忽视了。为了解决这个问题,本文通过各种热分析方法,系统地研究了基于LLO的软包电池的热失控(TR)过程,并阐明了不同的活化程度如何影响正极材料和电池的热稳定性。结果表明,对于活化程度较高的电池,会形成更易受损的固体电解质界面(SEI),导致在较低温度下发生自热过程。然后,由于正极材料稳定性的减弱,更多的放热反应被强化,释放出更多的热量,并在较低温度下触发TR过程。最后,在不受控制的TR期间,会释放出更多具有氧化性的O,这导致了放热氧化还原反应的加剧。因此,考虑到电池高能量密度和安全性之间的平衡,对LLO进行适度活化应该是一种合理且实际的应用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7100/11533477/8eb83dd9e194/d4ra06355d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验