Alzakari Sarah A, Ojo Stephen, Wanliss James, Umer Muhammad, Alsubai Shtwai, Alasiry Areej, Marzougui Mehrez, Innab Nisreen
Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
College of Engineering, Anderson University, Anderson, SC, United States.
Front Med (Lausanne). 2024 Oct 21;11:1487270. doi: 10.3389/fmed.2024.1487270. eCollection 2024.
Accurate detection of skin lesions through computer-aided diagnosis has emerged as a critical advancement in dermatology, addressing the inefficiencies and errors inherent in manual visual analysis. Despite the promise of automated diagnostic approaches, challenges such as image size variability, hair artifacts, color inconsistencies, ruler markers, low contrast, lesion dimension differences, and gel bubbles must be overcome. Researchers have made significant strides in binary classification problems, particularly in distinguishing melanocytic lesions from normal skin conditions. Leveraging the "MNIST HAM10000" dataset from the International Skin Image Collaboration, this study integrates Scale-Invariant Feature Transform (SIFT) features with a custom convolutional neural network model called LesionNet. The experimental results reveal the model's robustness, achieving an impressive accuracy of 99.28%. This high accuracy underscores the effectiveness of combining feature extraction techniques with advanced neural network models in enhancing the precision of skin lesion detection.
通过计算机辅助诊断准确检测皮肤病变已成为皮肤科的一项关键进展,解决了手动视觉分析中固有的效率低下和错误问题。尽管自动化诊断方法前景广阔,但仍需克服图像大小变化、毛发伪影、颜色不一致、标尺标记、对比度低、病变尺寸差异和凝胶气泡等挑战。研究人员在二分类问题上取得了重大进展,特别是在区分黑素细胞病变与正常皮肤状况方面。本研究利用国际皮肤图像协作组织的“MNIST HAM10000”数据集,将尺度不变特征变换(SIFT)特征与一个名为LesionNet的定制卷积神经网络模型相结合。实验结果显示了该模型的稳健性,达到了令人印象深刻的99.28%的准确率。这种高精度凸显了将特征提取技术与先进神经网络模型相结合在提高皮肤病变检测精度方面的有效性。