Suppr超能文献

利用优化的 CNN 架构和检查点进行皮肤癌自动诊断和分类。

Enhanced skin cancer diagnosis using optimized CNN architecture and checkpoints for automated dermatological lesion classification.

机构信息

Al-Ameen Engineering College (Autonomous), Erode, Tamil Nadu, India.

Department of Computer Science and Engineering, JAIN (Deemed-to-be University), Bengaluru, 562112, India.

出版信息

BMC Med Imaging. 2024 Aug 2;24(1):201. doi: 10.1186/s12880-024-01356-8.

Abstract

Skin cancer stands as one of the foremost challenges in oncology, with its early detection being crucial for successful treatment outcomes. Traditional diagnostic methods depend on dermatologist expertise, creating a need for more reliable, automated tools. This study explores deep learning, particularly Convolutional Neural Networks (CNNs), to enhance the accuracy and efficiency of skin cancer diagnosis. Leveraging the HAM10000 dataset, a comprehensive collection of dermatoscopic images encompassing a diverse range of skin lesions, this study introduces a sophisticated CNN model tailored for the nuanced task of skin lesion classification. The model's architecture is intricately designed with multiple convolutional, pooling, and dense layers, aimed at capturing the complex visual features of skin lesions. To address the challenge of class imbalance within the dataset, an innovative data augmentation strategy is employed, ensuring a balanced representation of each lesion category during training. Furthermore, this study introduces a CNN model with optimized layer configuration and data augmentation, significantly boosting diagnostic precision in skin cancer detection. The model's learning process is optimized using the Adam optimizer, with parameters fine-tuned over 50 epochs and a batch size of 128 to enhance the model's ability to discern subtle patterns in the image data. A Model Checkpoint callback ensures the preservation of the best model iteration for future use. The proposed model demonstrates an accuracy of 97.78% with a notable precision of 97.9%, recall of 97.9%, and an F2 score of 97.8%, underscoring its potential as a robust tool in the early detection and classification of skin cancer, thereby supporting clinical decision-making and contributing to improved patient outcomes in dermatology.

摘要

皮肤癌是肿瘤学面临的首要挑战之一,早期发现对于成功的治疗结果至关重要。传统的诊断方法依赖于皮肤科医生的专业知识,因此需要更可靠、自动化的工具。本研究探讨了深度学习,特别是卷积神经网络(CNN),以提高皮肤癌诊断的准确性和效率。本研究利用 HAM10000 数据集,该数据集包含了皮肤科图像的综合收集,涵盖了各种皮肤病变,引入了一种复杂的 CNN 模型,专门用于皮肤病变分类这一细致的任务。该模型的架构经过精心设计,具有多个卷积、池化和密集层,旨在捕捉皮肤病变的复杂视觉特征。为了解决数据集内类不平衡的挑战,采用了一种创新的数据增强策略,确保在训练过程中每个病变类别的代表性都均衡。此外,本研究引入了一种具有优化层配置和数据增强的 CNN 模型,大大提高了皮肤癌检测的诊断精度。该模型的学习过程使用 Adam 优化器进行优化,通过 50 多个时期和 128 个批次的参数微调,增强了模型在图像数据中识别细微模式的能力。模型检查点回调确保保存最佳模型迭代,以备将来使用。所提出的模型的准确率为 97.78%,具有显著的 97.9%的精度、97.9%的召回率和 97.8%的 F2 分数,这表明它有潜力成为皮肤癌早期检测和分类的有力工具,从而支持临床决策,并为皮肤科改善患者的预后做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3ff/11295341/0a130df52918/12880_2024_1356_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验