Suppr超能文献

风力涡轮机变压器及其在溶解气体评估中的局限性的综合分析。

A comprehensive analysis for wind turbine transformer and its limits in the dissolved gas evaluation.

作者信息

Arias Velásquez Ricardo Manuel

机构信息

Universidad Tecnológica Del Perú, Peru.

出版信息

Heliyon. 2024 Oct 16;10(20):e39449. doi: 10.1016/j.heliyon.2024.e39449. eCollection 2024 Oct 30.

Abstract

This study employs the PRISMA-A methodology to conduct a systematic review of transformer fault diagnostics using Dissolved Gas Analysis (DGA) data. A comprehensive analysis was performed across four major databases-IEEE, Scopus, ScienceDirect (Elsevier), and Web of Science-yielding 12,511 initial records. Following rigorous evaluation, including duplicate removal and eligibility criteria assessment, 1190 articles underwent statistical evaluation. The search strategy focused on keywords related to transformer faults and diagnostic methods, resulting in a refined dataset of 4810 DGA samples from wind park transformers. Detailed statistical analysis of gas concentrations-hydrogen, methane, carbon monoxide, carbon dioxide, ethylene, ethane, acetylene, oxygen, and nitrogen-revealed significant insights into fault indicators and distribution patterns. Furthermore, predictive modeling using various machine learning algorithms highlighted the efficacy of models such as Random Forest and CART, achieving accuracies up to 95.29 % in fault prediction tasks. Proposed revisions to IEEE gas concentration thresholds aim to enhance early fault detection capabilities, thereby improving maintenance planning and transformer reliability. The findings underscore the importance of advanced analytics and sustainable practices in transformer diagnostics, calling for continued research in predictive maintenance and eco-friendly insulation technologies to meet future energy challenges.

摘要

本研究采用PRISMA - A方法,对利用溶解气体分析(DGA)数据进行变压器故障诊断进行系统综述。在四个主要数据库——IEEE、Scopus、ScienceDirect(爱思唯尔)和科学网——中进行了全面分析,共得到12511条初始记录。经过严格评估,包括去除重复记录和评估入选标准,1190篇文章接受了统计评估。搜索策略聚焦于与变压器故障和诊断方法相关的关键词,最终得到了来自风电场变压器的4810个DGA样本的精炼数据集。对气体浓度——氢气、甲烷、一氧化碳、二氧化碳、乙烯、乙烷、乙炔、氧气和氮气——的详细统计分析揭示了故障指标和分布模式的重要见解。此外,使用各种机器学习算法进行的预测建模突出了随机森林和分类与回归树等模型的有效性,在故障预测任务中准确率高达95.29%。对IEEE气体浓度阈值的提议修订旨在提高早期故障检测能力,从而改进维护计划和变压器可靠性。研究结果强调了先进分析和可持续实践在变压器诊断中的重要性,呼吁在预测性维护和环保绝缘技术方面持续开展研究,以应对未来的能源挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3615/11532846/23e429807cc4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验