Suppr超能文献

并行双分支融合网络用于癫痫发作预测。

Parallel Dual-Branch Fusion Network for Epileptic Seizure Prediction.

机构信息

School of Information and Communication Engineering, Hainan University, Haikou, China; State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Comput Biol Med. 2024 Jun;176:108565. doi: 10.1016/j.compbiomed.2024.108565. Epub 2024 May 8.

Abstract

Epilepsy is a prevalent chronic disorder of the central nervous system. The timely and accurate seizure prediction using the scalp Electroencephalography (EEG) signal can make patients adopt reasonable preventive measures before seizures occur and thus reduce harm to patients. In recent years, deep learning-based methods have made significant progress in solving the problem of epileptic seizure prediction. However, most current methods mainly focus on modeling short- or long-term dependence in EEG, while neglecting to consider both. In this study, we propose a Parallel Dual-Branch Fusion Network (PDBFusNet) which aims to combine the complementary advantages of Convolutional Neural Network (CNN) and Transformer. Specifically, the features of the EEG signal are first extracted using Mel Frequency Cepstral Coefficients (MFCC). Then, the extracted features are delivered into the parallel dual-branches to simultaneously capture the short- and long-term dependencies of EEG signal. Further, regarding the Transformer branch, a novel feature fusion module is developed to enhance the ability of utilizing time, frequency, and channel information. To evaluate our proposal, we perform sufficient experiments on the public epileptic EEG dataset CHB-MIT, where the accuracy, sensitivity, specificity and precision are 95.76%, 95.81%, 95.71% and 95.71%, respectively. PDBFusNet shows superior performance compared to state-of-the-art competitors, which confirms the effectiveness of our proposal.

摘要

癫痫是一种常见的中枢神经系统慢性疾病。通过头皮脑电图(EEG)信号进行及时、准确的癫痫发作预测,可以使患者在发作前采取合理的预防措施,从而减少对患者的伤害。近年来,基于深度学习的方法在解决癫痫发作预测问题方面取得了重大进展。然而,目前大多数方法主要集中在对 EEG 中的短期或长期依赖关系进行建模,而忽略了两者兼顾。在这项研究中,我们提出了一种并行双分支融合网络(PDBFusNet),旨在结合卷积神经网络(CNN)和 Transformer 的互补优势。具体来说,首先使用梅尔频率倒谱系数(MFCC)提取 EEG 信号的特征。然后,将提取的特征送入并行的双分支中,同时捕捉 EEG 信号的短期和长期依赖关系。此外,对于 Transformer 分支,我们开发了一种新颖的特征融合模块,以增强利用时间、频率和通道信息的能力。为了评估我们的建议,我们在公共癫痫 EEG 数据集 CHB-MIT 上进行了充分的实验,其准确率、敏感度、特异性和精度分别为 95.76%、95.81%、95.71%和 95.71%。与最先进的竞争对手相比,PDBFusNet 表现出了优越的性能,这证实了我们建议的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验