Khan Zeshan Aslam, Waqar Muhammad, Chaudhary Naveed Ishtiaq, Raja Muhammad Junaid Ali Asif, Khan Saadia, Khan Farrukh Aslam, Chaudhary Iqra Ishtiaq, Raja Muhammad Asif Zahoor
International Graduate School of Artificial Intelligence, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan, Republic of China.
Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliu, Yunlin, 64002, Taiwan, Republic of China.
Heliyon. 2024 Oct 9;10(20):e39037. doi: 10.1016/j.heliyon.2024.e39037. eCollection 2024 Oct 30.
Alzheimer's is one of the brain syndromes that steadily affects the brain memory. The early stage of Alzheimer's disease (AD) is referred to as mild cognitive impairment (MCI), and the growth of Alzheimer's is not certain in patients with MCI. The premature detection of Alzheimer's is crucial for maintaining healthy brain function and avoiding memory loss. Different multi-neural network architectures have been proposed by researchers for efficient and accurate AD detection. The absence of improved feature extraction mechanisms and unexplored efficient optimizers in complex benchmark architectures lead to an inefficient and inaccurate AD classification. Moreover, the standard convolutional neural network (CNN)-based architectures for Alzheimer's diagnosis lack interpretability in their predictions. An interpretable, simplified, yet effective deep learning model is required for the accurate classification of AD. In this study, a generalized fractional order-based CNN classifier with explainable artificial intelligence (XAI) capabilities is proposed for accurate, efficient, and interpretable classification of AD diagnosis. The proposed study (a) classifies AD accurately by incorporating unexplored pooling technique with enhanced feature extraction mechanism, (b) provides fractional order-based optimization approach for adaptive learning and fast convergence speed, and (c) suggests an interpretable method for proving the transparency of the model. The proposed model outperforms complex benchmark architectures with regard to accuracy using standard ADNI dataset. The proposed fractional order-based CNN classifier achieves an improved accuracy of 99 % as compared to the state-of-the-art models.
阿尔茨海默病是一种逐渐影响大脑记忆的脑部综合征。阿尔茨海默病(AD)的早期阶段被称为轻度认知障碍(MCI),MCI患者中阿尔茨海默病的发展情况并不确定。阿尔茨海默病的早期检测对于维持大脑健康功能和避免记忆丧失至关重要。研究人员提出了不同的多神经网络架构用于高效准确的AD检测。复杂基准架构中缺乏改进的特征提取机制和未探索的高效优化器导致AD分类效率低下且不准确。此外,基于标准卷积神经网络(CNN)的阿尔茨海默病诊断架构在预测中缺乏可解释性。需要一个可解释、简化但有效的深度学习模型来准确分类AD。在本研究中,提出了一种具有可解释人工智能(XAI)能力的基于广义分数阶的CNN分类器,用于AD诊断的准确、高效和可解释分类。所提出的研究(a)通过结合未探索的池化技术和增强的特征提取机制准确分类AD,(b)提供基于分数阶的优化方法以实现自适应学习和快速收敛速度,(c)提出一种可解释方法以证明模型的透明度。使用标准ADNI数据集,所提出的模型在准确性方面优于复杂的基准架构。与现有模型相比,所提出的基于分数阶的CNN分类器实现了99%的更高准确率。