Bao Yunfei, Li Linlin, Chen Junliang, Cao Weiwei, Liu Wenchao, Ren Guangyue, Luo Zhenjiang, Pan Lifeng, Duan Xu
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
Agricultural Product Drying Equipment Engineering Technology Research Center in Henan Province, Henan University of Science and Technology, Luoyang 471023, China.
Food Chem X. 2024 Oct 16;24:101906. doi: 10.1016/j.fochx.2024.101906. eCollection 2024 Dec 30.
In this study, a pineapple-starch-xanthan gum system was prepared using fresh pineapple juice, maize starch, and xanthan gum (XG). The feasibility of using low-field nuclear magnetic resonance (LF-NMR) to predict pineapple gels' rheological properties and printability was evaluated. Results indicated that as maize starch and XG increased, the gel transformed from unable to support printed models to a stable shape, eventually becoming too viscous for printing. Principal component analysis and Fisher discriminant analysis classified the gels into four categories based on their rheological properties, aligning with the actual printing results. Pearson correlation analysis showed a strong correlation between the LF-NMR parameters and the rheological properties of gels. The partial least squares (PLS) and back-propagation artificial neural network (BP-ANN) models constructed using the LF-NMR parameters can effectively predict the rheological properties of pineapple gels. Therefore, LF-NMR is a valuable, non-destructive method for quickly assessing pineapple gels' 3D printing suitability.
在本研究中,使用新鲜菠萝汁、玉米淀粉和黄原胶(XG)制备了菠萝-淀粉-黄原胶体系。评估了利用低场核磁共振(LF-NMR)预测菠萝凝胶流变学特性和可打印性的可行性。结果表明,随着玉米淀粉和XG含量增加,凝胶从无法支撑打印模型转变为能保持稳定形状,最终变得过于黏稠而无法打印。主成分分析和Fisher判别分析根据凝胶的流变学特性将其分为四类,与实际打印结果相符。Pearson相关性分析表明,LF-NMR参数与凝胶的流变学特性之间存在强相关性。利用LF-NMR参数构建的偏最小二乘法(PLS)和反向传播人工神经网络(BP-ANN)模型能够有效预测菠萝凝胶的流变学特性。因此,LF-NMR是一种用于快速评估菠萝凝胶3D打印适用性的有价值的无损方法。