Yesuraj Johnbosco, Senthamaraikannan Thillai Govindaraja, Lim Dong-Hee, Kim Kibum
Department of Mechanical Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea.
Department of Environmental Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
Small. 2025 Mar;21(10):e2407608. doi: 10.1002/smll.202407608. Epub 2024 Nov 5.
Developing nanostructured multi-transition metal-based spinel architectures represents a strategic approach for boosting the energy density of supercapacitors while preserving high power density. Here, the influence of incorporating Zn and Cu into CoO spinel systems on supercapacitor performance is investigated by synthesizing single (ZnO, CuO, CoO), binary (ZnCoO, CuCoO), and ternary (ZnCuCoO) oxides on nickel foam substrates. Theoretical and experimental analyses highlight that the flower-like structures of ZnCuCoO, comprising nanowires and nanoribbons, effectively reduced transport barriers and enhanced ion adsorption, thereby improving electron/ion reaction kinetics. Oxygen vacancies induced defect states in ZnCuCoO, shifting the d- and p-band center values closer to the Fermi level and enhancing electrochemical performance. The ZnCuCoO exhibits a specific capacity of 271 mA h g (1776 F g) at 1 A g with 97% capacity retention after 5 000 charge/discharge cycles. In a ZnCuCoO//activated carbon configuration, the device demonstrates superior energy and power densities of 122.2 Wh kg and 800 W kg, respectively, maintaining 91% capacitance after 10 000 cycles at 30 A g with high coulombic efficiency. This study presents an effective strategy to enhance ion/charge transfer and adsorption in multi-transition metal spinel architectures, advancing the development of supercapacitor electrodes.
开发基于纳米结构的多过渡金属尖晶石结构是一种在保持高功率密度的同时提高超级电容器能量密度的战略方法。在此,通过在泡沫镍基底上合成单一氧化物(ZnO、CuO、CoO)、二元氧化物(ZnCoO、CuCoO)和三元氧化物(ZnCuCoO),研究了将Zn和Cu引入CoO尖晶石体系对超级电容器性能的影响。理论和实验分析表明,由纳米线和纳米带组成的ZnCuCoO的花状结构有效降低了传输势垒并增强了离子吸附,从而改善了电子/离子反应动力学。ZnCuCoO中氧空位诱导的缺陷态使d带和p带中心值更接近费米能级,提高了电化学性能。ZnCuCoO在1 A g下的比容量为271 mA h g(1776 F g),在5000次充放电循环后容量保持率为97%。在ZnCuCoO//活性炭配置中,该器件分别展示了122.2 Wh kg和800 W kg的优异能量和功率密度,在30 A g下10000次循环后电容保持率为91%,库仑效率高。本研究提出了一种在多过渡金属尖晶石结构中增强离子/电荷转移和吸附的有效策略,推动了超级电容器电极的发展。