Bozal-Ginesta Carlota, Sirvent Juande, Cordaro Giulio, Fearn Sarah, Pablo-García Sergio, Chiabrera Francesco, Choi Changhyeok, Laa Lisa, Núñez Marc, Cavallaro Andrea, Buzi Fjorelo, Aguadero Ainara, Dezanneau Guilhem, Kilner John, Morata Alex, Baiutti Federico, Aspuru-Guzik Alán, Tarancón Albert
Nanoionics and Fuel Cells group, Catalonia Institute for Energy Research, Jardins de Les Dones de Negre 1, Sant Adrià de Besòs, Barcelona, 08930, Spain.
Departments of Chemistry and Computer Science, University of Toronto, Lash Miller Chemical Laboratories, 80 St George Street, Toronto, Ontario, M5S 3H6, Canada.
Adv Mater. 2024 Dec;36(50):e2407372. doi: 10.1002/adma.202407372. Epub 2024 Nov 5.
Perovskite oxides form a large family of materials with applications across various fields, owing to their structural and chemical flexibility. Efficient exploration of this extensive compositional space is now achievable through automated high-throughput experimentation combined with machine learning. In this study, we investigate the composition-structure-performance relationships of high-entropy LaSrMnCoFeO perovskite oxides (0 < x, y, z <1; x+y+z≈1) for application as oxygen electrodes in Solid Oxide Cells. Following the deposition of a continuous compositional map using thin-film combinatorial pulsed laser deposition, compositional, structural, and performance properties are characterized using six different techniques with mapping capabilities. Random forests effectively model electrochemical performance, consistently identifying Fe-rich oxides as optimal compounds with the lowest area-specific resistance values for oxygen electrodes at 700 °C. Additionally, the models identify a statistical correlation between oxygen sublattice distortion-derived from spectral analysis of Raman-active modes-and enhanced performance.
钙钛矿氧化物构成了一大类材料,由于其结构和化学性质的灵活性,在各个领域都有应用。现在,通过自动化高通量实验与机器学习相结合,可以有效地探索这个广阔的成分空间。在本研究中,我们研究了高熵LaSrMnCoFeO钙钛矿氧化物(0 < x, y, z <1;x+y+z≈1)作为固体氧化物电池中氧电极的组成-结构-性能关系。使用薄膜组合脉冲激光沉积法绘制连续成分图后,使用六种具有映射功能的不同技术对成分、结构和性能进行表征。随机森林有效地模拟了电化学性能,一致地将富铁氧化物识别为700°C时氧电极面积比电阻值最低的最佳化合物。此外,这些模型还识别出了由拉曼活性模式光谱分析得出的氧亚晶格畸变与性能增强之间的统计相关性。