Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
Integr Biol (Camb). 2024 Jan 23;16. doi: 10.1093/intbio/zyae018.
Recent findings in cancer research have pointed towards the bidirectional interaction between circadian and hypoxia pathways. However, little is known about their crosstalk mechanism. In this work, we aimed to investigate this crosstalk at a network level utilizing the omics information of gallbladder cancer. Differential gene expression and pathway enrichment analysis were used for selecting the crucial genes from both the pathways, followed by the construction of a logical crosstalk model using GINsim. Functional circuit identification and node perturbations were then performed. Significant node combinations were used to investigate the temporal behavior of the network through MaBoSS. Lastly, the model was validated using published in vitro experimentations. Four new positive circuits and a new axis viz. BMAL1/ HIF1αβ/ NANOG, responsible for stemness were identified. Through triple node perturbations viz.a. BMAL:CLOCK (KO or E1) + P53 (E1) + HIF1α (KO); b. P53 (E1) + HIF1α (KO) + MYC (E1); and c. HIF1α (KO) + MYC (E1) + EGFR (KO), the model was able to inhibit cancer growth and maintain a homeostatic condition. This work provides an architecture for drug simulation analysis to entrainment circadian rhythm and in vitro experiments for chronotherapy-related studies. Insight Box. Circadian rhythm and hypoxia are the key dysregulated processes which fuels-up the cancer growth. In the present work we have developed a gallbladder cancer (GBC) specific Boolean model, utilizing the RNASeq data from GBC dataset and tissue specific interactions. This work adequately models the bidirectional nature of interactions previously illustrated in experimental papers showing the effect of hypoxia on dysregulation of circadian rhythm and the influence of this disruption on progression towards metastasis. Through the dynamical study of the model and its response to different perturbations, we report novel triple node combinations that can be targeted to efficiently reduce GBC growth. This network can be used as a generalized framework to investigate different crosstalk pathways linked with cancer progression.
最近的癌症研究发现指出了生物钟和低氧途径之间的双向相互作用。然而,它们之间的串扰机制知之甚少。在这项工作中,我们旨在利用胆囊癌的组学信息在网络水平上研究这种串扰。使用差异基因表达和途径富集分析从两个途径中选择关键基因,然后使用 GINsim 构建逻辑串扰模型。接着进行功能电路识别和节点扰动。然后使用显著节点组合通过 MaBoSS 研究网络的时间行为。最后,使用已发表的体外实验验证模型。鉴定出四个新的正回路和一个新的轴,即 BMAL1/HIF1αβ/NANOG,负责干细胞特性。通过三重节点扰动 a. BMAL:CLOCK (KO 或 E1) + P53 (E1) + HIF1α (KO); b. P53 (E1) + HIF1α (KO) + MYC (E1); 和 c. HIF1α (KO) + MYC (E1) + EGFR (KO),模型能够抑制癌症生长并维持体内平衡状态。这项工作为药物模拟分析提供了一个架构,以调整生物钟节律,并进行与时间治疗相关的体外实验。 见解框。生物钟和低氧是促进癌症生长的关键失调过程。在本工作中,我们利用 GBC 数据集和组织特异性相互作用的 RNA-Seq 数据,开发了一种胆囊癌 (GBC) 特定的布尔模型。这项工作充分模拟了之前在实验论文中说明的相互作用的双向性质,展示了低氧对生物钟节律失调的影响,以及这种干扰对转移进展的影响。通过模型的动态研究及其对不同扰动的响应,我们报告了新的三重节点组合,可以有效地靶向这些组合以减少 GBC 的生长。该网络可作为一个通用框架,用于研究与癌症进展相关的不同串扰途径。