Suppr超能文献

基于 CT 的深度学习模型预测体外冲击波碎石术治疗大于 1cm 的输尿管结石的成功率。

CT-based deep learning model for predicting the success of extracorporeal shock wave lithotripsy in treating ureteral stones larger than 1 cm.

机构信息

Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China.

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, China.

出版信息

Urolithiasis. 2024 Nov 5;52(1):157. doi: 10.1007/s00240-024-01656-2.

Abstract

OBJECTIVES

To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm.

MATERIALS AND METHODS

We enrolled 333 patients who underwent SWL treatment for ureteral stones and randomly divided them into training and test sets. A DL model was built based on CT images of ureteral stones to predict SWL outcomes. The predictive efficacy of the DL model was assessed by comparing it with traditional and radiomics models.

RESULTS

The DL model demonstrated significantly better predictive performance in both training and test sets compared to radiomics (training set, AUC: 0.993 vs. 0.923, P < 0.001; test set AUC: 0.982 vs. 0.846, P < 0.001) and traditional models (training set AUC: 0.993 vs. 0.75, P = 0.005; test set AUC: 0.982 vs. 0.677, P < 0.001). Decision curve analysis (DCA) also proved that the DL model brought more benefit in predicting the success of SWL treatment than other methods.

CONCLUSION

The DL model based on CT images showed excellent ability to predict the probability of success of SWL treatment for patients with ureteral stones larger than 1 cm, providing a new auxiliary tool for clinical treatment decision-making.

摘要

目的

开发一种基于计算机断层扫描(CT)图像的深度学习(DL)模型,以预测大于 1cm 的输尿管结石患者体外冲击波碎石(SWL)治疗的成功率。

材料与方法

我们纳入了 333 名接受 SWL 治疗的输尿管结石患者,并将其随机分为训练集和测试集。基于输尿管结石的 CT 图像建立了一个 DL 模型,以预测 SWL 结果。通过与传统模型和放射组学模型进行比较,评估了 DL 模型的预测效能。

结果

DL 模型在训练集和测试集中的预测性能均明显优于放射组学模型(训练集 AUC:0.993 比 0.923,P<0.001;测试集 AUC:0.982 比 0.846,P<0.001)和传统模型(训练集 AUC:0.993 比 0.75,P=0.005;测试集 AUC:0.982 比 0.677,P<0.001)。决策曲线分析(DCA)也证明,DL 模型在预测 SWL 治疗成功率方面比其他方法带来了更多的获益。

结论

基于 CT 图像的 DL 模型显示出预测大于 1cm 的输尿管结石患者 SWL 治疗成功率的优异能力,为临床治疗决策提供了新的辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验