Suppr超能文献

一项多中心研究,旨在开发一种非侵入性的放射组学模型,利用机器学习在体内识别泌尿系统感染结石。

A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning.

作者信息

Zheng Junjiong, Yu Hao, Batur Jesur, Shi Zhenfeng, Tuerxun Aierken, Abulajiang Abudukeyoumu, Lu Sihong, Kong Jianqiu, Huang Lifang, Wu Shaoxu, Wu Zhuo, Qiu Ya, Lin Tianxin, Zou Xiaoguang

机构信息

Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Department of Urology, the First People's Hospital of Kashi Prefecture, Affiliated Kashi Hospital of Sun Yat-Sen University, Kashi, People's Republic of China.

出版信息

Kidney Int. 2021 Oct;100(4):870-880. doi: 10.1016/j.kint.2021.05.031. Epub 2021 Jun 12.

Abstract

Urolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Stone composition was determined by Fourier transform infrared spectroscopy. A total of 1316 radiomic features were extracted from the pre-treatment Computer Tomography images of each patient. Using the least absolute shrinkage and selection operator algorithm, we identified a radiomic signature that achieved favorable discrimination in the training set, which was confirmed in the validation sets. Moreover, we then developed a radiomic model incorporating the radiomic signature, urease-producing bacteria in urine, and urine pH based on multivariate logistic regression analysis. The nomogram showed favorable calibration and discrimination in the training and three validation sets (area under the curve [95% confidence interval], 0.898 [0.840-0.956], 0.832 [0.742-0.923], 0.825 [0.783-0.866], and 0.812 [0.710-0.914], respectively). Decision curve analysis demonstrated the clinical utility of the radiomic model. Thus, our proposed radiomic model can serve as a non-invasive tool to identify urinary infection stones in vivo, which may optimize disease management in urolithiasis and improve patient prognosis.

摘要

尿路结石是一种常见的泌尿系统疾病,不同类型结石的治疗策略选择有所不同。然而,结石成分的准确检测只能在体外进行。感染性结石的管理尤其具有挑战性,目前尚无有效的方法在术前将感染性结石与非感染性结石区分开来。因此,我们旨在开发一种用于术前识别感染性结石的放射组学模型,并进行多中心验证。总共将来自三个中心的1198例符合条件的尿路结石患者分为训练集、内部验证集和两个外部验证集。通过傅里叶变换红外光谱法确定结石成分。从每位患者的治疗前计算机断层扫描图像中提取了总共1316个放射组学特征。使用最小绝对收缩和选择算子算法,我们确定了一种在训练集中具有良好区分能力的放射组学特征,并在验证集中得到了证实。此外,我们随后基于多变量逻辑回归分析开发了一种包含放射组学特征、尿液中产脲酶细菌和尿液pH值的放射组学模型。该列线图在训练集和三个验证集中均显示出良好的校准和区分能力(曲线下面积[95%置信区间]分别为0.898[0.840 - 0.956]、0.832[0.742 - 0.923]、0.825[0.783 - 0.866]和0.812[0.710 - 0.914])。决策曲线分析证明了该放射组学模型的临床实用性。因此,我们提出的放射组学模型可作为一种非侵入性工具在体内识别泌尿系统感染性结石,这可能优化尿路结石的疾病管理并改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验