Suppr超能文献

基于Meta分析的老年髋部骨折术后谵妄风险预测模型研究

Study on the predictive model of delirium risk after surgery for elderly hip fractures based on meta-analysis.

作者信息

Wan Weiliang, Li Liyun, Zou Zhuan, Chen Wenjie

机构信息

Hezhou People's Hospital, Hezhou, Guangxi, China.

出版信息

Eur Geriatr Med. 2025 Feb;16(1):245-270. doi: 10.1007/s41999-024-01095-7. Epub 2024 Nov 5.

Abstract

OBJECTIVE

To develop and validate a risk prediction model for postoperative delirium in elderly patients with hip fractures, aiming to identify high-risk patients and implement preventive measures.

METHODS

A systematic search of five authoritative medical databases was conducted, retrieving a total of 1368 relevant articles. After screening, 44 high-quality studies were included in the meta-analysis, analyzing 13 potential risk factors, such as age, gender, diabetes, and history of stroke. A risk prediction model was constructed and validated in a cohort of 189 elderly hip fracture patients. The model's predictive performance was evaluated using ROC curves, with calibration assessed through the Hosmer-Lemeshow test, and clinical utility examined via Decision Curve Analysis (DCA) and Clinical Impact Curves (CIC).

RESULTS

The meta-analysis identified the following as independent risk factors for postoperative delirium: age (≥ 70 years), male gender, diabetes, history of stroke, preoperative comorbidities (≥ 2), previous delirium, preoperative cognitive impairment, low preoperative albumin levels (≤ 40 g/L), prolonged preoperative waiting time (≥ 48 h), anemia (≤ 100 g/L), ASA classification (≥ 3), use of general anesthesia, and prolonged surgery duration (≥ 2 h). The prediction model demonstrated strong efficiency in the validation cohort, with an AUC of 0.956, sensitivity of 87.3%, specificity of 94.8%, and a Brier score of 0.144, indicating high predictive accuracy and calibration. DCA and CIC analyses showed the model to have strong clinical decision-making value and impact across most thresholds.

CONCLUSION

The risk prediction model developed in this study shows high predictive accuracy and clinical utility, making it valuable for identifying high-risk patients and implementing preventive measures in clinical practice. However, the study has limitations, such as potential retrospective bias, and further validation in larger, multicenter prospective studies is needed to confirm the model's broader applicability and stability.

摘要

目的

开发并验证一种针对老年髋部骨折患者术后谵妄的风险预测模型,旨在识别高危患者并实施预防措施。

方法

对五个权威医学数据库进行系统检索,共检索到1368篇相关文章。筛选后,44项高质量研究纳入荟萃分析,分析了13个潜在风险因素,如年龄、性别、糖尿病和中风史。在189例老年髋部骨折患者队列中构建并验证了风险预测模型。使用受试者工作特征曲线(ROC曲线)评估模型的预测性能,通过Hosmer-Lemeshow检验评估校准情况,并通过决策曲线分析(DCA)和临床影响曲线(CIC)检验临床实用性。

结果

荟萃分析确定以下因素为术后谵妄的独立风险因素:年龄(≥70岁)、男性、糖尿病、中风史、术前合并症(≥2种)、既往谵妄、术前认知障碍、术前白蛋白水平低(≤40 g/L)、术前等待时间延长(≥48小时)、贫血(≤100 g/L)、美国麻醉医师协会(ASA)分级(≥3级)、使用全身麻醉以及手术时间延长(≥2小时)。该预测模型在验证队列中显示出强大的效能,曲线下面积(AUC)为0.956,灵敏度为87.3%,特异度为94.8%,布里尔评分(Brier score)为0.144,表明预测准确性和校准良好。DCA和CIC分析表明,该模型在大多数阈值下具有强大的临床决策价值和影响。

结论

本研究开发的风险预测模型显示出较高的预测准确性和临床实用性,对在临床实践中识别高危患者并实施预防措施具有重要价值。然而,本研究存在局限性,如潜在的回顾性偏倚,需要在更大规模的多中心前瞻性研究中进一步验证,以确认该模型更广泛的适用性和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验