Suppr超能文献

为老年髋部骨折患者术后谵妄制定列线图。

Developing a nomogram for postoperative delirium in elderly patients with hip fractures.

作者信息

Li Liang, Sheng Wei-Wei, Song Li-Juan, Cheng Shuai, Cui En-Gang, Zhang Yong-Bing, Yu Xue-Zhong, Liu Yan-Li

机构信息

Department of Orthopaedics and Traumatology, Dongying People's Hospital, Dongying 257091, Shandong Province, China.

Department of Health Care, Dongying People's Hospital, Dongying 257091, Shandong Province, China.

出版信息

World J Psychiatry. 2025 Mar 19;15(3):102117. doi: 10.5498/wjp.v15.i3.102117.

Abstract

BACKGROUND

Postoperative delirium (POD) is a prevalent complication, particularly in elderly patients with hip fractures (HFs). It significantly affects recovery, length of hospital stay, healthcare costs, and long-term outcomes. Existing studies have investigated risk factors for POD, but most are limited by single-factor analyses or small sample sizes. This study systematically determines independent risk factors using large-scale data and machine learning techniques and develops a validated nomogram model to support early prediction and management of POD.

AIM

To investigate POD incidence in elderly patients with HF and the independent risk factors, according to which a nomogram prediction model was developed and validated.

METHODS

This retrospective study included elderly patients with HF who were surgically treated in Dongying People's Hospital from April 2018 to April 2022. The endpoint event includes POD. They were categorized into the modeling and validation cohorts in a 7:3 ratio by randomization. Both cohorts were further classified into the delirium and normal (non-delirium) groups according to the presence or absence of the endpoint event. The incidence of POD was calculated, and logistic multivariate analysis was conducted to determine the independent risk factors. The calibration curve and the Hosmer-Lemeshow test as well as the net benefit threshold probability interval by the decision curve were utilized to statistically validate the accuracy of the nomogram prediction model, developed according to each factor's influence intensity.

RESULTS

This study included 532 elderly patients with HF, with an overall POD incidence of 14.85%. The comparison of baseline data with perioperative indicators revealed statistical differences in age ( < 0.001), number of comorbidities ( = 0.042), American Society of Anesthesiologists grading ( = 0.004), preoperative red blood cell (RBC) count ( < 0.001), preoperative albumin ( < 0.001), preoperative hemoglobin ( < 0.001), preoperative platelet count ( < 0.001), intraoperative blood loss ( < 0.001), RBC transfusion of ≥ 2 units ( = 0.001), and postoperative intensive care unit care ( < 0.001) between the delirium and non-delirium groups. The participants were randomized to a training group ( = 372) and a validation group ( = 160). A score-risk nomogram prediction model was developed after screening key POD features using Lasso regression, support vector machine, and the random forest method. The nomogram showed excellent discriminatory capacity with area under the curve of 0.833 [95% confidence interval (CI) interval: 0.774-0.888] in the training group and 0.850 (95%CI: 0.718-0.982) in the validation group. Calibration curves demonstrated good agreement between predicted and actual probabilities, and decision curve analysis confirmed clinical net benefits within risk thresholds of 0%-30% and 0%-36%, respectively. The model has strong accuracy and clinical utility for predicting the risk of POD.

CONCLUSION

This study reveals cognitive impairment history, American Society of Anesthesiologists grade of > 2, RBC transfusion of ≥ 2 units, postoperative intensive care unit care, and preoperative hemoglobin level as independent risk factors for POD in elderly patients with HF. The developed nomogram model demonstrates excellent accuracy and stability in predicting the risk of POD, which is recommended to be applied in clinical practice to optimize postoperative management and reduce delirium incidence.

摘要

背景

术后谵妄(POD)是一种常见的并发症,在老年髋部骨折(HF)患者中尤为常见。它显著影响康复、住院时间、医疗费用和长期预后。现有研究调查了POD的危险因素,但大多数受单因素分析或小样本量的限制。本研究使用大规模数据和机器学习技术系统地确定独立危险因素,并开发一个经过验证的列线图模型,以支持POD的早期预测和管理。

目的

调查老年HF患者的POD发生率及独立危险因素,并据此开发和验证列线图预测模型。

方法

这项回顾性研究纳入了2018年4月至2022年4月在东营市人民医院接受手术治疗的老年HF患者。终点事件包括POD。通过随机化将他们按7:3的比例分为建模队列和验证队列。根据终点事件的有无,将两个队列进一步分为谵妄组和正常(非谵妄)组。计算POD的发生率,并进行逻辑多因素分析以确定独立危险因素。利用校准曲线、Hosmer-Lemeshow检验以及决策曲线的净效益阈值概率区间,对根据各因素影响强度开发的列线图预测模型的准确性进行统计学验证。

结果

本研究纳入了532例老年HF患者,总体POD发生率为14.85%。基线数据与围手术期指标的比较显示,谵妄组和非谵妄组在年龄(<0.001)、合并症数量(=0.042)、美国麻醉医师协会分级(=0.004)、术前红细胞(RBC)计数(<0.001)、术前白蛋白(<0.001)、术前血红蛋白(<0.001)、术前血小板计数(<0.001)、术中失血量(<0.001)、输注≥2单位RBC(=0.001)以及术后重症监护病房护理(<0.001)方面存在统计学差异。参与者被随机分为训练组(=372)和验证组(=160)。在使用套索回归、支持向量机和随机森林方法筛选关键POD特征后,开发了一个评分风险列线图预测模型。该列线图在训练组中的曲线下面积为0.833 [95%置信区间(CI):0.774 - 0.888],在验证组中的曲线下面积为0.850(95%CI:0.718 - 0.982),显示出良好的区分能力。校准曲线表明预测概率与实际概率之间具有良好的一致性,决策曲线分析分别证实了在0% - 30%和0% - 36%的风险阈值内具有临床净效益。该模型在预测POD风险方面具有较高的准确性和临床实用性。

结论

本研究揭示认知障碍病史、美国麻醉医师协会分级>2、输注≥2单位RBC、术后重症监护病房护理以及术前血红蛋白水平是老年HF患者发生POD的独立危险因素。开发的列线图模型在预测POD风险方面显示出优异的准确性和稳定性,建议在临床实践中应用以优化术后管理并降低谵妄发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7144/11886321/f5894d7bbfc8/102117-g001.jpg

相似文献

1
Developing a nomogram for postoperative delirium in elderly patients with hip fractures.
World J Psychiatry. 2025 Mar 19;15(3):102117. doi: 10.5498/wjp.v15.i3.102117.
3
[Construction and validation of a nomogram for predicting in-hospital postoperative heart failure in elderly patients with hip fracture].
Beijing Da Xue Xue Bao Yi Xue Ban. 2024 Oct 18;56(5):874-883. doi: 10.19723/j.issn.1671-167X.2024.05.019.
6
Nomogram for predicting the risk of postoperative delirium in elderly patients undergoing orthopedic surgery.
Perioper Med (Lond). 2024 May 4;13(1):34. doi: 10.1186/s13741-024-00393-9.
7
A Nomogram to Predict Delirium after Hip Replacement in Elderly Patients with Femoral Neck Fractures.
Orthop Surg. 2022 Dec;14(12):3195-3200. doi: 10.1111/os.13541. Epub 2022 Oct 17.
8
Development and Internal Validation of a Nomogram for Predicting Postoperative Cardiac Events in Elderly Hip Fracture Patients.
Clin Interv Aging. 2023 Dec 12;18:2063-2078. doi: 10.2147/CIA.S435264. eCollection 2023.
9
Predictive nomogram for postoperative delirium in elderly patients with a hip fracture.
Injury. 2019 Feb;50(2):392-397. doi: 10.1016/j.injury.2018.10.034. Epub 2018 Oct 30.

本文引用的文献

1
3
Risk factors for postoperative delirium in orthopaedic hip surgery patients: a database review.
BMC Musculoskelet Disord. 2024 Jan 17;25(1):71. doi: 10.1186/s12891-024-07174-x.
4
The impact of preoperative malnutrition on postoperative delirium: a systematic review and meta-analysis.
Perioper Med (Lond). 2023 Oct 26;12(1):55. doi: 10.1186/s13741-023-00345-9.
5
Risk prediction models for postoperative delirium in elderly patients with hip fracture: a systematic review.
Front Med (Lausanne). 2023 Sep 15;10:1226473. doi: 10.3389/fmed.2023.1226473. eCollection 2023.
7
Predictors of one-year mortality following hip fracture surgery in elderly.
PeerJ. 2023 Sep 8;11:e16008. doi: 10.7717/peerj.16008. eCollection 2023.
8
Excess mortality in elderly hip fracture patients: An Indian experience.
Chin J Traumatol. 2023 Nov;26(6):363-368. doi: 10.1016/j.cjtee.2023.06.004. Epub 2023 Jun 26.
9
A machine learning-based scoring system and ten factors associated with hip fracture occurrence in the elderly.
Bone. 2023 Nov;176:116865. doi: 10.1016/j.bone.2023.116865. Epub 2023 Aug 8.
10
Machine learning algorithms to predict risk of postoperative pneumonia in elderly with hip fracture.
J Orthop Surg Res. 2023 Aug 5;18(1):571. doi: 10.1186/s13018-023-04049-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验