Computational Neuroscience Lab, Donders Center for Neuroscience, Radboud University, Nijmegen, Netherlands.
Elife. 2024 Nov 5;13:RP98489. doi: 10.7554/eLife.98489.
Animal behaviour alternates between stochastic exploration and goal-directed actions, which are generated by the underlying neural dynamics. Previously, we demonstrated that the compositional Restricted Boltzmann Machine (cRBM) can decompose whole-brain activity of larval zebrafish data at the neural level into a small number (∼100-200) of assemblies that can account for the stochasticity of the neural activity (van der Plas et al., eLife, 2023). Here, we advance this representation by extending to a combined stochastic-dynamical representation to account for both aspects using the recurrent temporal RBM (RTRBM) and transfer-learning based on the cRBM estimate. We demonstrate that the functional advantage of the RTRBM is captured in the temporal weights on the hidden units, representing neural assemblies, for both simulated and experimental data. Our results show that the temporal expansion outperforms the stochastic-only cRBM in terms of generalization error and achieves a more accurate representation of the moments in time. Lastly, we demonstrate that we can identify the original time-scale of assembly dynamics by estimating multiple RTRBMs at different temporal resolutions. Together, we propose that RTRBMs are a valuable tool for capturing the combined stochastic and time-predictive dynamics of large-scale data sets.
动物行为在随机探索和目标导向行动之间交替,这些行动是由潜在的神经动力学产生的。此前,我们证明了组合受限玻尔兹曼机 (cRBM) 可以将斑马鱼幼虫全脑活动数据在神经水平上分解为一小部分(∼100-200)的集合,这些集合可以解释神经活动的随机性(van der Plas 等人,eLife,2023)。在这里,我们通过扩展到组合随机动力学表示来推进这种表示,使用递归时间 RBM (RTRBM) 并基于 cRBM 估计进行迁移学习来同时考虑这两个方面。我们证明,RTRBM 的功能优势体现在代表神经集合的隐藏单元上的时间权重上,无论是模拟数据还是实验数据。我们的结果表明,与仅具有随机性的 cRBM 相比,时间扩展在泛化误差方面表现更好,并实现了更准确的时间点表示。最后,我们证明通过在不同的时间分辨率下估计多个 RTRBM,我们可以识别集合动力学的原始时间尺度。总之,我们提出 RTRBM 是捕获大规模数据集的组合随机和时间预测动力学的有价值的工具。