文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基因调控的非平衡态下的灵活性和敏感性。

Flexibility and sensitivity in gene regulation out of equilibrium.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2411395121. doi: 10.1073/pnas.2411395121. Epub 2024 Nov 5.


DOI:10.1073/pnas.2411395121
PMID:39499638
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11573582/
Abstract

Cells adapt to environments and tune gene expression by controlling the concentrations of proteins and their kinetics in regulatory networks. In both eukaryotes and prokaryotes, experiments and theory increasingly attest that these networks can and do consume biochemical energy. How does this dissipation enable cellular behaviors forbidden in equilibrium? This open question demands quantitative models that transcend thermodynamic equilibrium. Here, we study the control of simple, ubiquitous gene regulatory networks to explore the consequences of departing equilibrium in transcription. Employing graph theory to model a set of especially common regulatory motifs, we find that dissipation unlocks nonmonotonicity and enhanced sensitivity of gene expression with respect to a transcription factor's concentration. These features allow a single transcription factor to act as both a repressor and activator at different concentrations or achieve outputs with multiple concentration regimes of locally enhanced sensitivity. We systematically dissect how energetically driving individual transitions within regulatory networks, or pairs of transitions, generates a wide range of more adjustable and sensitive phenotypic responses than in equilibrium. These results generalize to more complex regulatory scenarios, including combinatorial control by multiple transcription factors, which we relate and often find collapse to simple mathematical behaviors. Our findings quantify necessary conditions and detectable consequences of energy expenditure. These richer mathematical behaviors-feasibly accessed using biological energy budgets and rates-may empower cells to accomplish sophisticated regulation with simpler architectures than those required at equilibrium.

摘要

细胞通过控制调控网络中蛋白质的浓度及其动力学来适应环境并调节基因表达。在真核生物和原核生物中,实验和理论越来越证明这些网络可以而且确实会消耗生化能量。这种耗散如何使细胞行为在平衡时无法实现?这个悬而未决的问题需要超越热力学平衡的定量模型。在这里,我们研究了简单的、普遍存在的基因调控网络的控制,以探索转录中偏离平衡的后果。我们运用图论来模拟一组特别常见的调控基序,发现耗散会解锁非单调和基因表达对转录因子浓度的增强敏感性。这些特征允许单个转录因子在不同浓度下既作为抑制剂又作为激活剂,或者在局部增强敏感性的多个浓度范围内实现输出。我们系统地剖析了在调控网络中驱动单个转变或对转变的组合如何产生比平衡时更广泛的、更可调的和更敏感的表型反应。这些结果推广到更复杂的调控场景,包括多个转录因子的组合控制,我们将其关联并经常发现可以简化为简单的数学行为。我们的发现量化了能量消耗的必要条件和可检测后果。这些更丰富的数学行为——可以使用生物能量预算和速率来实现——可能使细胞能够用比平衡时更简单的结构来完成复杂的调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/dcbe08be985c/pnas.2411395121fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/3bfae5d45579/pnas.2411395121fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/45ec2c3e86b6/pnas.2411395121fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/1e9ebd12b30b/pnas.2411395121fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/dd0b2aebd383/pnas.2411395121fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/1b358388427f/pnas.2411395121fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/dcbe08be985c/pnas.2411395121fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/3bfae5d45579/pnas.2411395121fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/45ec2c3e86b6/pnas.2411395121fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/1e9ebd12b30b/pnas.2411395121fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/dd0b2aebd383/pnas.2411395121fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/1b358388427f/pnas.2411395121fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/11573582/dcbe08be985c/pnas.2411395121fig06.jpg

相似文献

[1]
Flexibility and sensitivity in gene regulation out of equilibrium.

Proc Natl Acad Sci U S A. 2024-11-12

[2]
Flexibility and sensitivity in gene regulation out of equilibrium.

bioRxiv. 2023-4-13

[3]
Competing constraints shape the nonequilibrium limits of cellular decision-making.

Proc Natl Acad Sci U S A. 2023-3-7

[4]
Governing principles of transcriptional logic out of equilibrium.

Biophys J. 2024-4-16

[5]
Quantitative dissection of transcription in development yields evidence for transcription-factor-driven chromatin accessibility.

Elife. 2020-10-19

[6]
Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function.

Phys Life Rev. 2016-6-23

[7]
Out-of-equilibrium dynamics of gene expression and the Jarzynski equality.

Phys Rev Lett. 2008-5-9

[8]
Quantifying transcriptional regulatory networks by integrating sequence features and microarray data.

Bioprocess Biosyst Eng. 2009-8-6

[9]
A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

BMC Biol. 2014-12-5

[10]
Decoupling transcription factor expression and activity enables dimmer switch gene regulation.

Science. 2021-4-16

引用本文的文献

[1]
Ecosystems as adaptive living circuits.

bioRxiv. 2025-6-29

[2]
Identification and understanding of allostery hotspots in proteins: Integration of deep mutational scanning and multi-faceted computational analyses.

J Mol Biol. 2025-2-12

[3]
Deciphering regulatory architectures of bacterial promoters from synthetic expression patterns.

PLoS Comput Biol. 2024-12-26

[4]
Emergence of activation or repression in transcriptional control under a fixed molecular context.

bioRxiv. 2024-6-2

[5]
The Hill function is the universal Hopfield barrier for sharpness of input-output responses.

bioRxiv. 2024-3-28

[6]
Governing principles of transcriptional logic out of equilibrium.

Biophys J. 2024-4-16

[7]
Deciphering regulatory architectures from synthetic single-cell expression patterns.

bioRxiv. 2024-6-5

[8]
Deciphering regulatory architectures from synthetic single-cell expression patterns.

ArXiv. 2024-6-5

本文引用的文献

[1]
Functional decomposition of metabolism allows a system-level quantification of fluxes and protein allocation towards specific metabolic functions.

Nat Commun. 2023-7-13

[2]
Size limits the sensitivity of kinetic schemes.

Nat Commun. 2023-3-8

[3]
Competing constraints shape the nonequilibrium limits of cellular decision-making.

Proc Natl Acad Sci U S A. 2023-3-7

[4]
Eukaryotic gene regulation at equilibrium, or non?

Curr Opin Syst Biol. 2022-9

[5]
Progressive enhancement of kinetic proofreading in T cell antigen discrimination from receptor activation to DAG generation.

Elife. 2022-9-20

[6]
REDfly: An Integrated Knowledgebase for Insect Regulatory Genomics.

Insects. 2022-7-11

[7]
The linear framework: using graph theory to reveal the algebra and thermodynamics of biomolecular systems.

Interface Focus. 2022-6-10

[8]
RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional regulation in K-12.

Microb Genom. 2022-5

[9]
Sequence specificity in DNA binding is mainly governed by association.

Science. 2022-1-28

[10]
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells.

Proc Natl Acad Sci U S A. 2021-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索