文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从受体激活到 DAG 产生,T 细胞抗原识别中的动力学校正的逐步增强。

Progressive enhancement of kinetic proofreading in T cell antigen discrimination from receptor activation to DAG generation.

机构信息

Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.

出版信息

Elife. 2022 Sep 20;11:e75263. doi: 10.7554/eLife.75263.


DOI:10.7554/eLife.75263
PMID:36125261
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9536835/
Abstract

T cells use kinetic proofreading to discriminate antigens by converting small changes in antigen-binding lifetime into large differences in cell activation, but where in the signaling cascade this computation is performed is unknown. Previously, we developed a light-gated immune receptor to probe the role of ligand kinetics in T cell antigen signaling. We found significant kinetic proofreading at the level of the signaling lipid diacylglycerol (DAG) but lacked the ability to determine where the multiple signaling steps required for kinetic discrimination originate in the upstream signaling cascade (Tiseher and Weiner, 2019). Here, we uncover where kinetic proofreading is executed by adapting our optogenetic system for robust activation of early signaling events. We find the strength of kinetic proofreading progressively increases from Zap70 recruitment to LAT clustering to downstream DAG generation. Leveraging the ability of our system to rapidly disengage ligand binding, we also measure slower reset rates for downstream signaling events. These data suggest a distributed kinetic proofreading mechanism, with proofreading steps both at the receptor and at slower resetting downstream signaling complexes that could help balance antigen sensitivity and discrimination.

摘要

T 细胞通过将抗原结合寿命中的微小变化转化为细胞激活的巨大差异来利用动力学校对来区分抗原,但在信号级联中执行此计算的位置尚不清楚。此前,我们开发了一种光门控免疫受体来探究配体动力学在 T 细胞抗原信号转导中的作用。我们发现信号脂质二酰基甘油 (DAG) 水平存在显著的动力学校对,但缺乏确定多个信号步骤的能力,这些步骤是进行动力学区分所必需的,这些步骤源自上游信号级联(Tiseher 和 Weiner,2019 年)。在这里,我们通过适应我们的光遗传学系统来稳健地激活早期信号事件,从而揭示了动力学校对的执行位置。我们发现,从 Zap70 募集到 LAT 聚集再到下游 DAG 生成,动力学校对的强度逐渐增加。利用我们的系统快速脱离配体结合的能力,我们还测量了下游信号事件的较慢重置率。这些数据表明存在分布式动力学校对机制,校对步骤既在受体上,也在较慢重置的下游信号复合物上,这有助于平衡抗原敏感性和区分能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/e1cd44d602b7/elife-75263-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/f0918cb7ecb7/elife-75263-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/2202b90d822a/elife-75263-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/33fed75f7a16/elife-75263-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/2a8d18010830/elife-75263-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/c625bbcbc9bc/elife-75263-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/708872af7221/elife-75263-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/2873089f0da3/elife-75263-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/408b1428c315/elife-75263-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/fc6e70c4cde7/elife-75263-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/a368eef71133/elife-75263-fig4-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/08ada6a9228b/elife-75263-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/e1cd44d602b7/elife-75263-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/f0918cb7ecb7/elife-75263-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/2202b90d822a/elife-75263-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/33fed75f7a16/elife-75263-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/2a8d18010830/elife-75263-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/c625bbcbc9bc/elife-75263-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/708872af7221/elife-75263-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/2873089f0da3/elife-75263-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/408b1428c315/elife-75263-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/fc6e70c4cde7/elife-75263-fig4-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/a368eef71133/elife-75263-fig4-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/08ada6a9228b/elife-75263-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16b/9536835/e1cd44d602b7/elife-75263-fig5-figsupp1.jpg

相似文献

[1]
Progressive enhancement of kinetic proofreading in T cell antigen discrimination from receptor activation to DAG generation.

Elife. 2022-9-20

[2]
Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling.

Elife. 2019-4-5

[3]
Kinetic proofreading through the multi-step activation of the ZAP70 kinase underlies early T cell ligand discrimination.

Nat Immunol. 2022-9

[4]
Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor.

Elife. 2019-4-5

[5]
Reliable ligand discrimination in stochastic multistep kinetic proofreading: First passage time vs. product counting strategies.

PLoS Comput Biol. 2024-6

[6]
A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination.

Cell. 2017-3-23

[7]
How the T cell signaling network processes information to discriminate between self and agonist ligands.

Proc Natl Acad Sci U S A. 2020-10-5

[8]
Kinetic proofreading model.

Adv Exp Med Biol. 2008

[9]
Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement.

Cell Mol Immunol. 2011-9-12

[10]
A single-amino acid substitution in the adaptor LAT accelerates TCR proofreading kinetics and alters T-cell selection, maintenance and function.

Nat Immunol. 2023-4

引用本文的文献

[1]
Optogenetic engineering for precision cancer immunotherapy.

Trends Pharmacol Sci. 2025-6-10

[2]
Proofreading and single-molecule sensitivity in T cell receptor signaling by condensate nucleation.

Proc Natl Acad Sci U S A. 2025-6-3

[3]
Flexibility and sensitivity in gene regulation out of equilibrium.

Proc Natl Acad Sci U S A. 2024-11-12

[4]
Mechanical force matters in early T cell activation.

Proc Natl Acad Sci U S A. 2024-9-10

[5]
Measuring and modeling the dynamics of mitotic error correction.

Proc Natl Acad Sci U S A. 2024-6-18

[6]
Design of Crosslinking Antibodies For T-Cell Activation: Experimental and Computational Analysis of PD-1/CD137 Bispecific Agents.

AAPS J. 2024-6-11

[7]
Mechanical forces amplify TCR mechanotransduction in T cell activation and function.

Appl Phys Rev. 2024-3

[8]
Optical sensing and control of T cell signaling pathways.

Front Physiol. 2024-1-10

[9]
Early Chromatin Remodeling Events in Acutely Stimulated CD8 T Cells.

Yale J Biol Med. 2023-12

[10]
Offsetting Low-Affinity Carbohydrate Binding with Covalency to Engage Sugar-Specific Proteins for Tumor-Immune Proximity Induction.

ACS Cent Sci. 2023-11-3

本文引用的文献

[1]
Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor.

Proc Natl Acad Sci U S A. 2022-3-1

[2]
The discriminatory power of the T cell receptor.

Elife. 2021-5-25

[3]
Quantifying persistence in the T-cell signaling network using an optically controllable antigen receptor.

Mol Syst Biol. 2021-5

[4]
A disease-associated mutation that weakens ZAP70 autoinhibition enhances responses to weak and self-ligands.

Sci Signal. 2021-2-2

[5]
HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis.

Cell. 2020-11-25

[6]
How the T cell signaling network processes information to discriminate between self and agonist ligands.

Proc Natl Acad Sci U S A. 2020-10-5

[7]
Endocrine Autoimmune Disease as a Fragility of Immune Surveillance against Hypersecreting Mutants.

Immunity. 2020-5-19

[8]
SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat Methods. 2020-2-3

[9]
Slow phosphorylation of a tyrosine residue in LAT optimizes T cell ligand discrimination.

Nat Immunol. 2019-10-14

[10]
Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling.

Elife. 2019-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索