Suppr超能文献

光热增强型纳米酶重塑肿瘤氧化还原和代谢稳态微环境以增强肿瘤治疗中的铁死亡

Photothermally Reinforced Nanozyme Remodeling Tumor Microenvironment of Redox and Metabolic Homeostasis to Enhance Ferroptosis in Tumor Therapy.

机构信息

College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China.

Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China.

出版信息

ACS Nano. 2024 Nov 19;18(46):32235-32254. doi: 10.1021/acsnano.4c13087. Epub 2024 Nov 5.

Abstract

The acidity and high GSH level in the tumor microenvironment (TME) greatly limit the antitumor activity of nanozymes. Thus, enhancing nanozymes' activity is fundamentally challenging in tumor therapy. Although the combination of photothermal therapy (PTT) and nanozymes can enhance the catalytic activity, cancer cells will overexpress heat shock proteins (HSPs) at high temperature, aggravating the heat resistance of tumor cells, which in turn compromises the outcome of chemodynamic therapy. Herein, we propose an iron-doped metal-organic framework nanozyme (IB@Fe-ZIF8@PDFA) that can be activated under the weak acidity and high level of GSH, demonstrating the activities of GSH oxidation (GSH-OXD), peroxidase (POD), and NADH oxidase (NADH-OXD). Under laser irradiation, it displays photothermal-enhanced multienzyme activities to simultaneously eliminate tumors and inhibit tumor metastasis. While consuming endogenous GSH, IB@Fe-ZIF8@PDFA promotes the decomposition of HO into ·OH, enhancing ferroptosis in tumor cells. Surprisingly, IB@Fe-ZIF8@PDFA nanozyme can oxide NADH and subsequently limit the ATP supply, reducing the expression of HSPs and significantly weakening the heat resistance of tumor cells during PTT. Meanwhile, HO is generated during this procedure, which can endogenously replenish the consumed HO. Thus, this IB@Fe-ZIF8@PDFA nanozyme constitutes a self-cascading platform to consume GSH and NADH, endogenously replenish the HO and continuously generate ·OH to facilitate ferroptosis by disrupting the redox and metabolic homeostasis in tumor cells, achieving tumor elimination and tumor metastasis inhibition.

摘要

肿瘤微环境(TME)的酸度和高 GSH 水平极大地限制了纳米酶的抗肿瘤活性。因此,从根本上提高纳米酶的活性在肿瘤治疗中极具挑战性。虽然光热治疗(PTT)和纳米酶的结合可以增强催化活性,但癌细胞在高温下会过度表达热休克蛋白(HSPs),加剧肿瘤细胞的耐热性,从而影响化学动力学治疗的效果。在此,我们提出了一种铁掺杂的金属有机框架纳米酶(IB@Fe-ZIF8@PDFA),它可以在弱酸性和高 GSH 水平下被激活,表现出 GSH 氧化(GSH-OXD)、过氧化物酶(POD)和 NADH 氧化酶(NADH-OXD)的活性。在激光照射下,它表现出光热增强的多酶活性,可同时消除肿瘤并抑制肿瘤转移。在消耗内源性 GSH 的同时,IB@Fe-ZIF8@PDFA 促进 HO 分解为·OH,增强肿瘤细胞中的铁死亡。令人惊讶的是,IB@Fe-ZIF8@PDFA 纳米酶可以氧化 NADH,进而限制 ATP 的供应,降低 HSPs 的表达,并在 PTT 过程中显著减弱肿瘤细胞的耐热性。同时,在此过程中会产生 HO,可内源性地补充消耗的 HO。因此,这种 IB@Fe-ZIF8@PDFA 纳米酶构成了一个自级联平台,可消耗 GSH 和 NADH,内源性地补充 HO,并持续生成·OH,通过破坏肿瘤细胞的氧化还原和代谢平衡来促进铁死亡,从而实现肿瘤消除和肿瘤转移抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验