Real World Solutions, IQVIA, Frankfurt, Germany.
Real World Solutions, IQVIA, Falls Church, Virginia, USA.
Pharmacoepidemiol Drug Saf. 2024 Nov;33(11):e70041. doi: 10.1002/pds.70041.
Artificial intelligence (AI) and machine learning (ML) are important tools across many fields of health and medical research. Pharmacoepidemiologists can bring essential methodological rigor and study design expertise to the design and use of these technologies within healthcare settings. AI/ML-based tools also play a role in pharmacoepidemiology research, as we may apply them to answer our own research questions, take responsibility for evaluating medical devices with AI/ML components, or participate in interdisciplinary research to create new AI/ML algorithms. While epidemiologic expertise is essential to deploying AI/ML responsibly and ethically, the rapid advancement of these technologies in the past decade has resulted in a knowledge gap for many in the field. This article provides a brief overview of core AI/ML concepts, followed by a discussion of potential applications of AI/ML in pharmacoepidemiology research, and closes with a review of important concepts across application areas, including interpretability and fairness. This review is intended to provide an accessible, practical overview of AI/ML for pharmacoepidemiology research, with references to further, more detailed resources on fundamental topics.
人工智能 (AI) 和机器学习 (ML) 是医疗健康研究诸多领域中的重要工具。临床药物流行病学学家能够为医疗环境中这些技术的设计和使用带来必要的方法学严谨性和研究设计专业知识。基于 AI/ML 的工具在临床药物流行病学研究中也发挥着作用,因为我们可以应用它们来回答自己的研究问题,负责评估具有 AI/ML 组件的医疗器械,或参与跨学科研究以创建新的 AI/ML 算法。虽然流行病学专业知识对于负责任和合乎道德地部署 AI/ML 至关重要,但这些技术在过去十年中的快速发展导致该领域的许多人存在知识差距。本文简要概述了核心的 AI/ML 概念,接着讨论了 AI/ML 在临床药物流行病学研究中的潜在应用,并在最后回顾了应用领域中的重要概念,包括可解释性和公平性。这篇综述旨在为临床药物流行病学研究提供一个易于理解且实用的 AI/ML 概述,并提供了有关基础主题的更详细资源的参考。