Li Yijun, Stanojevic Stefan, He Bing, Jing Zheng, Huang Qianhui, Kang Jian, Garmire Lana X
Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Res Sq. 2024 Oct 25:rs.3.rs-5315913. doi: 10.21203/rs.3.rs-5315913/v1.
Spatial transcriptomics has allowed researchers to analyze transcriptome data in its tissue sample's spatial context. Various methods have been developed for detecting spatially variable genes (SV genes), whose gene expression over the tissue space shows strong spatial autocorrelation. Such genes are often used to define clusters in cells or spots downstream. However, highly variable (HV) genes, whose quantitative gene expressions show significant variation from cell to cell, are conventionally used in clustering analyses. In this report, we investigate whether adding highly variable genes to spatially variable genes can improve the cell type clustering performance in spatial transcriptomics data. We tested the clustering performance of HV genes, SV genes, and the union of both gene sets (concatenation) on over 50 real spatial transcriptomics datasets across multiple platforms, using a variety of spatial and non-spatial metrics. Our results show that combining HV genes and SV genes can improve overall cell-type clustering performance.
空间转录组学使研究人员能够在组织样本的空间背景下分析转录组数据。已经开发出各种方法来检测空间可变基因(SV基因),其在组织空间上的基因表达表现出很强的空间自相关性。此类基因通常用于在下游定义细胞或斑点中的簇。然而,高度可变(HV)基因,其定量基因表达在细胞间表现出显著差异,传统上用于聚类分析。在本报告中,我们研究了将高度可变基因添加到空间可变基因中是否能提高空间转录组学数据中的细胞类型聚类性能。我们使用多种空间和非空间指标,在多个平台上的50多个真实空间转录组学数据集上测试了HV基因、SV基因以及这两个基因集的并集(串联)的聚类性能。我们的结果表明,将HV基因和SV基因结合起来可以提高整体细胞类型聚类性能。