Thomas du Toit Daniel F, Zhou Yuxing, Deringer Volker L
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
J Chem Theory Comput. 2024 Nov 26;20(22):10103-10113. doi: 10.1021/acs.jctc.4c01012. Epub 2024 Nov 6.
Machine learning-based interatomic potentials enable accurate materials simulations on extended time- and length scales. ML potentials based on the atomic cluster expansion (ACE) framework have recently shown promising performance for this purpose. Here, we describe a largely automated computational approach to optimizing hyperparameters for ACE potential models. We extend our openly available Python package, XPOT, to include an interface for ACE fitting, and discuss the optimization of the functional form and complexity of these models based on systematic sweeps across relevant hyperparameters. We showcase the usefulness of the approach for two example systems: the covalent network of silicon and the phase-change material SbTe. More generally, our work emphasizes the importance of hyperparameter selection in the development of advanced ML potential models.
基于机器学习的原子间势能够在扩展的时间和长度尺度上实现精确的材料模拟。基于原子簇展开(ACE)框架的机器学习势最近在这方面表现出了有前景的性能。在此,我们描述了一种用于优化ACE势模型超参数的高度自动化的计算方法。我们扩展了我们公开可用的Python包XPOT,以包括ACE拟合接口,并基于对相关超参数的系统扫描讨论这些模型的函数形式和复杂度的优化。我们展示了该方法对两个示例系统的有用性:硅的共价网络和相变材料SbTe。更一般地说,我们的工作强调了超参数选择在先进机器学习势模型开发中的重要性。