Boyd Chris, Brown Gregory C, Kleinig Timothy J, Mayer Wolfgang, Dawson Joseph, Jenkinson Mark, Bezak Eva
Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
Medical Physics and Radiation Safety, South Australia Medical Imaging, Adelaide, Australia.
J Appl Clin Med Phys. 2024 Dec;25(12):e14542. doi: 10.1002/acm2.14542. Epub 2024 Oct 10.
PURPOSE/AIM: This paper provides a pedagogical example for systematic machine learning optimization in small dataset image segmentation, emphasizing hyperparameter selections. A simple process is presented for medical physicists to examine hyperparameter optimization. This is also applied to a case-study, demonstrating the benefit of the method.
An unrestricted public Computed Tomography (CT) dataset, with binary organ segmentation, was used to develop a multiclass segmentation model. To start the optimization process, a preliminary manual search of hyperparameters was conducted and from there a grid search identified the most influential result metrics. A total of 658 different models were trained in 2100 h, using 13 160 effective patients. The quantity of results was analyzed using random forest regression, identifying relative hyperparameter impact.
Metric implied segmentation quality (accuracy 96.8%, precision 95.1%) and visual inspection were found to be mismatched. In this work batch normalization was most important, but performance varied with hyperparameters and metrics selected. Targeted grid-search optimization and random forest analysis of relative hyperparameter importance, was an easily implementable sensitivity analysis approach.
The proposed optimization method gives a systematic and quantitative approach to something intuitively understood, that hyperparameters change model performance. Even just grid search optimization with random forest analysis presented here can be informative within hardware and data quality/availability limitations, adding confidence to model validity and minimize decision-making risks. By providing a guided methodology, this work helps medical physicists to improve their model optimization, irrespective of specific challenges posed by datasets and model design.
目的/目标:本文提供了一个在小数据集图像分割中进行系统机器学习优化的教学示例,重点强调超参数选择。文中介绍了一个简单的过程,供医学物理学家检验超参数优化。该过程还应用于一个案例研究,展示了该方法的优势。
使用一个无限制的公开计算机断层扫描(CT)数据集(带有二元器官分割)来开发一个多类分割模型。为启动优化过程,首先对超参数进行了初步手动搜索,然后通过网格搜索确定了最具影响力的结果指标。使用13160名有效患者,在2100小时内训练了总共658个不同的模型。使用随机森林回归分析结果数量,确定相对超参数影响。
发现指标所暗示的分割质量(准确率96.8%,精确率95.1%)与视觉检查结果不匹配。在这项工作中,批量归一化最为重要,但性能会随所选的超参数和指标而变化。有针对性的网格搜索优化以及对超参数重要性的随机森林分析,是一种易于实施的敏感性分析方法。
所提出的优化方法为超参数会改变模型性能这一直观认识提供了一种系统且定量的方法。即使只是本文介绍的带有随机森林分析的网格搜索优化,在硬件以及数据质量/可用性限制范围内也可能具有参考价值,增强对模型有效性的信心并将决策风险降至最低。通过提供一种有指导的方法,这项工作有助于医学物理学家改进他们的模型优化,而不论数据集和模型设计带来的具体挑战如何。