Blanco Nouche Cintia, Picard Laura, Cochet Carine, Paris Cedric, Oger Philippe, Turpault Marie-Pierre, Uroz Stéphane
Université de Lorraine, INRAE, « UMR1136 Interactions Arbres-Microorganismes », Nancy, France.
INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France.
Appl Environ Microbiol. 2024 Dec 18;90(12):e0122124. doi: 10.1128/aem.01221-24. Epub 2024 Nov 6.
While mineral weathering (MWe) plays a key role in plant growth promotion and soil fertility, the molecular mechanisms and the genes used by bacteria to weather minerals remain poorly characterized. Acidification-based dissolution is considered the primary mechanism used by bacteria. This mechanism is historically associated with the conversion of glucose to protons and gluconic acid through the action of particular glucose dehydrogenases (GDH) dependent on the pyrroquinoline quinone (PQQ) cofactor. Recently, bacteria lacking the GDH-PQQ system have been shown to perform the same enzymatic conversion with a glucose/methanol/choline (GMC) FAD-dependent oxidoreductase. Determining whether this particular enzyme is specific or widespread is especially important in terms of ecology and evolution. Genome analysis of the effective MWe strain PML1(12) revealed the presence of both systems (., GDH-PQQ and several GMC oxidoreductases). The combination of mutagenesis, functional assays, and geochemical analyses demonstrated the key role of one of these GMC oxidoreductases in the mineral weathering ability of strain PML1(12) and the importance of the carbon source metabolized. Mass spectrometry confirmed the conversion of glucose to gluconic acid. Phylogenetic analyses highlighted a good relatedness of this new GMC oxidoreductase with GMC oxidoreductases presenting a GDH activity in and and conferring its mineral weathering ability to the last one. Together, our analyses expand the number of bacteria capable of weathering minerals using GMC oxidoreductases, showing that such enzymes are not restricted to .
This work deciphers the molecular and genetic bases used by strain PML1(12) of to weather minerals. Through bioinformatics analyses, we identified a total of four GMC-FAD oxidoreductases in the genome of strain PML1(12) and a putative PQQ-dependent glucose dehydrogenase. Through a combination of physiological and geochemical analyses, we revealed that one of them (i.e., GMC3) was the enzyme responsible for the acidification-based mineral weathering mechanism used by strain PML1(12). To date, a single representative of this enzyme family has been identified in the effective mineral-weathering bacterial strain PMB3(1). Phylogenetic analyses revealed that this new system appeared conserved in the genus. The new findings presented in this work demonstrate that GMC oxidoreductases can have an active role in other effective MWe bacteria outside of collimonads and that are capable of weathering minerals using this type of enzyme. Our findings offer relevant information for different fields of research, such as environmental genomics, microbiology, chemistry, evolutionary biology, and soil sciences.
虽然矿物风化(MWe)在促进植物生长和土壤肥力方面起着关键作用,但细菌用于风化矿物的分子机制和基因仍未得到充分表征。基于酸化的溶解被认为是细菌使用的主要机制。历史上,这种机制与通过依赖于吡咯喹啉醌(PQQ)辅因子的特定葡萄糖脱氢酶(GDH)的作用将葡萄糖转化为质子和葡萄糖酸有关。最近,已证明缺乏GDH-PQQ系统的细菌可通过葡萄糖/甲醇/胆碱(GMC)FAD依赖性氧化还原酶进行相同的酶促转化。确定这种特定酶是特异性的还是广泛存在的,在生态学和进化方面尤其重要。对有效的MWe菌株PML1(12)的基因组分析揭示了两种系统的存在(即GDH-PQQ和几种GMC氧化还原酶)。诱变、功能测定和地球化学分析的结合证明了这些GMC氧化还原酶之一在菌株PML1(12)的矿物风化能力中的关键作用以及所代谢碳源的重要性。质谱证实了葡萄糖向葡萄糖酸的转化。系统发育分析突出了这种新的GMC氧化还原酶与在[具体物种1]和[具体物种2]中具有GDH活性并赋予其矿物风化能力的GMC氧化还原酶有良好的相关性。总之,我们的分析扩大了能够使用GMC氧化还原酶风化矿物的细菌数量,表明此类酶不限于[特定范围]。
这项工作破译了[具体细菌属]的菌株PML1(12)用于风化矿物的分子和遗传基础。通过生物信息学分析,我们在菌株PML1(12)的基因组中总共鉴定出四种GMC-FAD氧化还原酶和一种假定的PQQ依赖性葡萄糖脱氢酶。通过生理和地球化学分析的结合,我们揭示其中一种(即GMC3)是负责菌株PML1(12)所使用的基于酸化的矿物风化机制的酶。迄今为止,在有效的矿物风化细菌菌株[具体菌株名称]PMB3(1)中仅鉴定出该酶家族的一个代表。系统发育分析表明,这种新系统在[具体细菌属]中似乎是保守的。这项工作中提出的新发现表明,GMC氧化还原酶在[具体细菌属]以外的其他有效的MWe细菌中可以发挥积极作用,并且能够使用这种类型的酶风化矿物。我们的发现为环境基因组学、微生物学、化学、进化生物学和土壤科学等不同研究领域提供了相关信息。