Suppr超能文献

矿物类型和树种决定森林土壤细菌群落的功能和分类结构。

Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities.

作者信息

Colin Y, Nicolitch O, Turpault M-P, Uroz S

机构信息

INRA, Université de Lorraine, UMR 1136 Interactions Arbres Micro-organismes, Centre INRA de Nancy, Champenoux, France.

INRA UR 1138 Biogéochimie des Ecosystèmes Forestiers, Centre INRA de Nancy, Champenoux, France.

出版信息

Appl Environ Microbiol. 2017 Feb 15;83(5). doi: 10.1128/AEM.02684-16. Print 2017 Mar 1.

Abstract

Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of and effective mineral-weathering bacteria related to the and genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems.

摘要

尽管矿物质是土壤的重要组成部分,但其对土壤微生物群落多样性和结构的影响仍鲜有文献记载。在本研究中,我们考虑了具有不同化学组成的纯矿物颗粒(即黑曜石、磷灰石和方解石)。每种矿物类型均置于网袋中,并在不同林分(山毛榉、带标准木的萌生林和科西嘉松)下的土壤中培养2.5年,以确定矿物学和矿物耐风化性对与矿物相关细菌群落的分类和功能多样性的相对影响。在这个培养期之后,收集矿物和周围的大量土壤,以确定质量损失,并进行土壤分析、酶活性测定以及基于培养和非培养的分析。值得注意的是,我们的16S rRNA基因焦磷酸测序分析表明,在2.5年的培养期后,对于所有考虑的林分,与矿物相关的细菌群落与周围大量土壤中的细菌群落有很大差异。仅关注矿物时,我们的分析表明,与方解石(较不耐风化的矿物类型)相关的细菌群落与定殖在黑曜石和磷灰石矿物上的细菌群落有显著差异。基于培养的分析显示,在最难风化的矿物(即磷灰石和黑曜石)上,有效矿物风化细菌的丰度显著更高。综合来看,我们的数据表明,在矿物上与 属和 属相关的有效矿物风化细菌有所富集,这表明这些分类群在养分贫瘠的森林生态系统中的矿物风化和养分循环中起关键作用。森林通常生长在养分贫瘠的岩石土壤上,而肥沃的土壤则用于农业。在此背景下,养分循环和养分获取是此类环境中的关键过程。解读土壤矿物学如何根据土壤条件影响土壤细菌群落的多样性、结构和功能,对于更好地理解土壤细菌群落在养分贫瘠环境中的养分循环和植物营养中的相对作用至关重要。本研究使用基于培养和非培养的分析方法,详细确定了在不同树种下的土壤中培养2.5年的不同矿物类型相关细菌群落的多样性和结构。我们的数据表明,在矿物上,特别是在风化程度最高的矿物上,特定细菌分类群有所富集,这表明它们在养分贫瘠的森林生态系统中的矿物风化和养分循环中起关键作用。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验