Blanco Nouche Cintia, Paris Cédric, Dhalleine Tiphaine, Oger Philippe, Turpault Marie-Pierre, Uroz Stéphane
Université de Lorraine, INRAE, UMR1136 Interactions Arbres-Microorganismes, Nancy, France.
INRAE, UR1138 Biogéochimie des Ecosystèmes Forestiers, Champenoux, France.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0045323. doi: 10.1128/aem.00453-23. Epub 2023 Oct 6.
To mobilize nutrients entrapped into minerals and rocks, heterotrophic bacteria living in nutrient-poor environments have developed different mechanisms based mainly on acidolysis and chelation. However, the genetic bases of these mechanisms remain unidentified. To fill this gap, we considered the model strain PML1(12) known to be effective at weathering. Based on its transcriptomics and proteomics responses in Fe-depleted conditions, we pointed a cluster of genes differentially expressed and putatively involved in the production of siderophores. In this study, we report the characterization of this gene region coding for the production of a non-ribosomal peptide synthetase-independent siderophore (NIS). Targeted mutagenesis associated with functional assays and liquid chromatography coupled to high-resolution tandem mass spectrometry demonstrated the production of a single siderophore, identified as rhizobactin. This siderophore represents the first NIS containing malic acid in its structure. The evidence for the implication of rhizobactin in mineral weathering was demonstrated during a hematite dissolution assay. This study provides the first demonstration of the synthesis of a NIS in the genus and its involvement in mineral weathering. Our conclusions reinforce the idea that strain PML1(12) is particularly well adapted to nutrient-poor environments. IMPORTANCE This work deciphers the molecular and genetic bases used by strain PML1(12) of to mobilize iron and weather minerals. Through the combination of bioinformatics, chemical, and phylogenetic analyses, we characterized the siderophore produced by strain PML1(12) and the related genes. This siderophore was identified as rhizobactin and classified as a non-ribosomal peptide synthetase-independent siderophore (NIS). Contrary to the previously identified NIS synthetases that form siderophores containing citric acid, α-ketoglutarate, or succinic acid, our analyses revealed that rhizobactin contains malic acid in its structure, representing, therefore, the first identified NIS with such an acid and probably a new NIS category. Last, this work demonstrates for the first time the effectiveness at weathering minerals of a siderophore of the NIS family. Our findings offer relevant information for different fields of research, such as environmental genomics, microbiology, chemistry, and soil sciences.
为了调动被困在矿物质和岩石中的养分,生活在营养贫瘠环境中的异养细菌已经开发出了主要基于酸解和螯合作用的不同机制。然而,这些机制的遗传基础仍未明确。为了填补这一空白,我们考虑了已知在风化方面有效的模式菌株PML1(12)。基于其在缺铁条件下的转录组学和蛋白质组学反应,我们指出了一组差异表达且可能参与铁载体产生的基因。在本研究中,我们报告了对该编码非核糖体肽合成酶非依赖性铁载体(NIS)产生的基因区域的表征。与功能测定以及液相色谱与高分辨率串联质谱联用相关的靶向诱变表明产生了一种单一的铁载体,鉴定为根瘤菌素。这种铁载体是其结构中含有苹果酸的首个NIS。在赤铁矿溶解试验中证明了根瘤菌素参与矿物风化的证据。本研究首次证明了在该属中合成了一种NIS及其参与矿物风化。我们的结论强化了菌株PML1(12)特别适应营养贫瘠环境的观点。重要性 这项工作破译了菌株PML1(12)用于调动铁和风化矿物的分子和遗传基础。通过生物信息学、化学和系统发育分析的结合,我们表征了菌株PML1(12)产生的铁载体及其相关基因。这种铁载体被鉴定为根瘤菌素,并被归类为非核糖体肽合成酶非依赖性铁载体(NIS)。与先前鉴定的形成含有柠檬酸、α-酮戊二酸或琥珀酸的铁载体的NIS合成酶相反,我们的分析表明根瘤菌素在其结构中含有苹果酸,因此代表了首个鉴定出的含有这种酸的NIS,可能是一个新的NIS类别。最后,这项工作首次证明了NIS家族的一种铁载体在风化矿物方面的有效性。我们的发现为环境基因组学、微生物学、化学和土壤科学等不同研究领域提供了相关信息。