Suppr超能文献

在玻璃表面进行纳米钛涂层处理以改善富血小板纤维蛋白(PRF)质量。

Nano-titanium coating on glass surface to improve platelet-rich fibrin (PRF) quality.

机构信息

Department of Periodontology, Faculty of Dentistry, Canakkale Onsekiz Mart University, 17110, Canakkale, Turkey.

Department of Physics, Faculty of Science, Eskişehir Osmangazi University, 26004, Eskişehir, Turkey.

出版信息

J Mater Sci Mater Med. 2024 Nov 6;35(1):67. doi: 10.1007/s10856-024-06838-3.

Abstract

The quality of platelet-rich fibrin (PRF) is contingent on the surface characteristics interfacing with blood. Titanium's superior platelet activation, surpassing silica, has made Titanium-platelet-rich fibrin (T-PRF) a favored autogenous bone graft material due to its extended degradation time. Pioneering a novel approach, this study aims to achieve an enhanced fibrin structure using glass tubes coated with nano-titanium, marking the surface's debut in our PRF production endeavors. Employing a rapid thermionic vacuum arc (TVA) process under high vacuum, we conducted comprehensive analyses of the tubes. Comprehensive analyses, including X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), were conducted on the nano-titanium-coated glass tubes. Three PRF types were formulated: silica-activated leukocyte- and platelet-rich fibrin (L-PRF, control group), machined-surface titanium tubes (T-PRF), and nano-titanium-coated tubes (nanoT-PRF). Analyses unveiled denser fibrin areas in nanoT-PRF than T-PRF, with the least dense areas in L-PRF. Cell distribution paralled between nanoT-PRF and T-PRF groups, while L-PRF cells were embedded in the fibrin border. NanoT-PRF exhibited the densest autogenous fibrin structure, suggesting prolonged in vivo resorption. Additionally, we explore the potential practicality of single-use production for nanoT-PRF tubes, introducing a promising clinical advancement. This study marks a significant stride in innovative biomaterial design, contributing to the progress of regenerative medicine.

摘要

富血小板纤维蛋白(PRF)的质量取决于与血液相互作用的表面特性。钛的血小板激活作用优于二氧化硅,使其成为一种受欢迎的自体骨移植物材料,因为它具有延长的降解时间。本研究开创了一种新方法,旨在使用涂覆有纳米钛的玻璃管来实现增强的纤维蛋白结构,这标志着该表面首次用于我们的 PRF 生产中。我们采用高真空下的快速热离子真空弧(TVA)工艺对玻璃管进行了全面分析。对涂覆纳米钛的玻璃管进行了 X 射线衍射(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)和能谱分析(EDS)等综合分析。我们制备了三种 PRF 类型:二氧化硅激活的白细胞和血小板富纤维蛋白(L-PRF,对照组)、机械加工表面钛管(T-PRF)和纳米钛涂覆管(nanoT-PRF)。分析表明,nanoT-PRF 中的纤维蛋白区域比 T-PRF 更密集,而 L-PRF 的纤维蛋白区域最稀疏。细胞分布在 nanoT-PRF 和 T-PRF 组之间相似,而 L-PRF 细胞嵌入纤维蛋白边界。nanoT-PRF 表现出最密集的自体纤维蛋白结构,表明体内吸收时间延长。此外,我们还探索了用于 nanoT-PRF 管的一次性生产的潜在实用性,这为临床带来了一项有前途的进展。本研究标志着创新生物材料设计的重大进展,为再生医学的发展做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8953/11541251/70c41030784b/10856_2024_6838_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验