Department of Periodontology, Faculty of Dentistry, Canakkale Onsekiz Mart University, 17110, Canakkale, Turkey.
Department of Physics, Faculty of Science, Eskişehir Osmangazi University, 26004, Eskişehir, Turkey.
J Mater Sci Mater Med. 2024 Nov 6;35(1):67. doi: 10.1007/s10856-024-06838-3.
The quality of platelet-rich fibrin (PRF) is contingent on the surface characteristics interfacing with blood. Titanium's superior platelet activation, surpassing silica, has made Titanium-platelet-rich fibrin (T-PRF) a favored autogenous bone graft material due to its extended degradation time. Pioneering a novel approach, this study aims to achieve an enhanced fibrin structure using glass tubes coated with nano-titanium, marking the surface's debut in our PRF production endeavors. Employing a rapid thermionic vacuum arc (TVA) process under high vacuum, we conducted comprehensive analyses of the tubes. Comprehensive analyses, including X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), were conducted on the nano-titanium-coated glass tubes. Three PRF types were formulated: silica-activated leukocyte- and platelet-rich fibrin (L-PRF, control group), machined-surface titanium tubes (T-PRF), and nano-titanium-coated tubes (nanoT-PRF). Analyses unveiled denser fibrin areas in nanoT-PRF than T-PRF, with the least dense areas in L-PRF. Cell distribution paralled between nanoT-PRF and T-PRF groups, while L-PRF cells were embedded in the fibrin border. NanoT-PRF exhibited the densest autogenous fibrin structure, suggesting prolonged in vivo resorption. Additionally, we explore the potential practicality of single-use production for nanoT-PRF tubes, introducing a promising clinical advancement. This study marks a significant stride in innovative biomaterial design, contributing to the progress of regenerative medicine.
富血小板纤维蛋白(PRF)的质量取决于与血液相互作用的表面特性。钛的血小板激活作用优于二氧化硅,使其成为一种受欢迎的自体骨移植物材料,因为它具有延长的降解时间。本研究开创了一种新方法,旨在使用涂覆有纳米钛的玻璃管来实现增强的纤维蛋白结构,这标志着该表面首次用于我们的 PRF 生产中。我们采用高真空下的快速热离子真空弧(TVA)工艺对玻璃管进行了全面分析。对涂覆纳米钛的玻璃管进行了 X 射线衍射(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)和能谱分析(EDS)等综合分析。我们制备了三种 PRF 类型:二氧化硅激活的白细胞和血小板富纤维蛋白(L-PRF,对照组)、机械加工表面钛管(T-PRF)和纳米钛涂覆管(nanoT-PRF)。分析表明,nanoT-PRF 中的纤维蛋白区域比 T-PRF 更密集,而 L-PRF 的纤维蛋白区域最稀疏。细胞分布在 nanoT-PRF 和 T-PRF 组之间相似,而 L-PRF 细胞嵌入纤维蛋白边界。nanoT-PRF 表现出最密集的自体纤维蛋白结构,表明体内吸收时间延长。此外,我们还探索了用于 nanoT-PRF 管的一次性生产的潜在实用性,这为临床带来了一项有前途的进展。本研究标志着创新生物材料设计的重大进展,为再生医学的发展做出了贡献。