Suppr超能文献

在动态血压监测背景下,使用分类与回归树分析进行患者特异性多因素死亡风险评估。

Patient-specific multifactorial mortality risk assessment using classification and regression tree analysis in the context of ambulatory blood pressure monitoring.

作者信息

Çetin Bahar Tekin, Hasbal Nuri Baris, Cevik Enes, Sahin Ozgun Ekin, Akyol Merve, Kalay Zeynepgul, Ucku Duygu, Tanriover Cem, Güldan Mustafa, Özbek Lasin, Memetoglu Onur, Erden Mert Emre, Copur Sidar, Siriopol Ianis, Siriopol Dimitrie, Ciceri Paola, Cozzolino Mario, Kanbay Mehmet

机构信息

Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey.

Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey.

出版信息

J Nephrol. 2025 Jan;38(1):197-205. doi: 10.1007/s40620-024-02128-x. Epub 2024 Nov 6.

Abstract

BACKGROUND

Ambulatory blood pressure monitoring is essential for understanding blood pressure patterns beyond clinical visits, aiding in risk assessment, treatment evaluation, and managing hypertension. This retrospective cohort study aimed to identify risk factors for all-cause mortality and major cardiovascular events in patients who underwent ambulatory blood pressure monitoring.

METHODOLOGY

Eligible participants aged 18 or older, with an estimated glomerular filtration rate (eGFR) > 60 ml/min/1.73 m, who underwent ambulatory blood pressure monitoring for various reasons, were included in the study. Data were gathered through telephone interviews, electronic health records, and the national health record system. Descriptive analysis and classification and regression tree modeling were used to uncover significant risk factors related to all-cause mortality and cardiovascular events, and to assess the model's performance compared to traditional Cox survival analysis.

RESULTS

The study included 1291 patients, primarily male (51.8%) with a mean age of 61.1 ± 15.2 years. During a mean follow-up of 46.9 months, 76 (5.9%) patients died of any cause, and 195 (15.1%) had a cardiovascular event. The highest survival rates were observed in patients with a diastolic blood pressure (BP) dipping percentage between - 2% and 29%, nighttime systolic BP variability below 32 mmHg, and age below 72. Conversely, smokers with a diastolic BP dipping percentage below - 10% showed the lowest survival rates. The best cardiovascular outcomes were observed in patients with diastolic BP dipping above - 11%, nighttime mean systolic BP < 144 mmHg, no statin use, normotensive status, and daytime mean heart rate ≥ 60 bpm. Conversely, the worst outcomes were seen in patients with diastolic BP dipping below - 11% and a morning surge ≥ 14 mmHg. In all-cause mortality and cardiovascular event analysis, the combined model demonstrated excellent calibration and predictive power, like the classification and regression tree model and traditional analysis.

CONCLUSION

These findings highlight the potential of a combined model for assessing mortality and cardiovascular event risk in patients who have undergone ambulatory blood pressure monitoring.

摘要

背景

动态血压监测对于了解临床就诊之外的血压模式、辅助风险评估、治疗评估以及管理高血压至关重要。这项回顾性队列研究旨在确定接受动态血压监测患者的全因死亡率和主要心血管事件的危险因素。

方法

符合条件的参与者年龄在18岁及以上,估计肾小球滤过率(eGFR)>60 ml/min/1.73 m²,因各种原因接受动态血压监测,被纳入研究。数据通过电话访谈、电子健康记录和国家健康记录系统收集。描述性分析以及分类与回归树建模用于发现与全因死亡率和心血管事件相关的重要危险因素,并与传统Cox生存分析相比评估模型的性能。

结果

该研究纳入了1291名患者,主要为男性(51.8%),平均年龄为61.1±15.2岁。在平均46.9个月的随访期间,76名(5.9%)患者死于任何原因,195名(15.1%)发生了心血管事件。舒张压(BP)下降百分比在-2%至29%之间、夜间收缩压变异性低于32 mmHg且年龄低于72岁的患者生存率最高。相反,舒张压下降百分比低于-10%的吸烟者生存率最低。舒张压下降高于-11%、夜间平均收缩压<144 mmHg、未使用他汀类药物、血压正常状态且白天平均心率≥60次/分钟的患者心血管结局最佳。相反,舒张压下降低于-11%且早晨血压激增≥14 mmHg的患者结局最差。在全因死亡率和心血管事件分析中,联合模型显示出良好的校准和预测能力,与分类与回归树模型和传统分析一样。

结论

这些发现凸显了联合模型在评估接受动态血压监测患者的死亡率和心血管事件风险方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验