Suppr超能文献

电子健康记录数据质量和性能评估:范围综述。

Electronic Health Record Data Quality and Performance Assessments: Scoping Review.

机构信息

Department of Medicine, University of Florida, Gainesville, Florida, United States.

Intelligent Clinical Care Center, University of Florida, Gainesville, Florida, United States.

出版信息

JMIR Med Inform. 2024 Nov 6;12:e58130. doi: 10.2196/58130.

Abstract

BACKGROUND

Electronic health records (EHRs) have an enormous potential to advance medical research and practice through easily accessible and interpretable EHR-derived databases. Attainability of this potential is limited by issues with data quality (DQ) and performance assessment.

OBJECTIVE

This review aims to streamline the current best practices on EHR DQ and performance assessments as a replicable standard for researchers in the field.

METHODS

PubMed was systematically searched for original research articles assessing EHR DQ and performance from inception until May 7, 2023.

RESULTS

Our search yielded 26 original research articles. Most articles had 1 or more significant limitations, including incomplete or inconsistent reporting (n=6, 30%), poor replicability (n=5, 25%), and limited generalizability of results (n=5, 25%). Completeness (n=21, 81%), conformance (n=18, 69%), and plausibility (n=16, 62%) were the most cited indicators of DQ, while correctness or accuracy (n=14, 54%) was most cited for data performance, with context-specific supplementation by recency (n=7, 27%), fairness (n=6, 23%), stability (n=4, 15%), and shareability (n=2, 8%) assessments. Artificial intelligence-based techniques, including natural language data extraction, data imputation, and fairness algorithms, were demonstrated to play a rising role in improving both dataset quality and performance.

CONCLUSIONS

This review highlights the need for incentivizing DQ and performance assessments and their standardization. The results suggest the usefulness of artificial intelligence-based techniques for enhancing DQ and performance to unlock the full potential of EHRs to improve medical research and practice.

摘要

背景

电子健康记录 (EHR) 通过易于访问和可解释的 EHR 衍生数据库,具有极大的推进医学研究和实践的潜力。但数据质量 (DQ) 和性能评估方面的问题限制了这种潜力的实现。

目的

本综述旨在为该领域的研究人员提供一种可复制的标准,简化当前 EHR DQ 和性能评估的最佳实践。

方法

系统地检索了从 EHR 诞生到 2023 年 5 月 7 日的评估 EHR DQ 和性能的原始研究文章。

结果

我们的搜索共产生了 26 篇原始研究文章。大多数文章都存在 1 个或多个重大局限性,包括报告不完整或不一致 (n=6, 30%)、可重复性差 (n=5, 25%),以及结果的普遍适用性有限 (n=5, 25%)。完整性 (n=21, 81%)、一致性 (n=18, 69%) 和合理性 (n=16, 62%) 是 DQ 最常被引用的指标,而正确性或准确性 (n=14, 54%) 是数据性能最常被引用的指标,通过最近性 (n=7, 27%)、公平性 (n=6, 23%)、稳定性 (n=4, 15%) 和可共享性 (n=2, 8%) 评估进行具体补充。基于人工智能的技术,包括自然语言数据提取、数据插补和公平性算法,已被证明在提高数据集质量和性能方面发挥着越来越重要的作用。

结论

本综述强调了激励 DQ 和性能评估及其标准化的必要性。结果表明,基于人工智能的技术在提高 DQ 和性能方面具有实用性,可以充分发挥 EHR 的潜力,以改善医学研究和实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa04/11559435/436116b2745d/medinform-v12-e58130-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验