Wang Shu, Myers Amy J, Irvine Edward B, Wang Chuangqi, Maiello Pauline, Rodgers Mark A, Tomko Jaime, Kracinovsky Kara, Borish H Jacob, Chao Michael C, Mugahid Douaa, Darrah Patricia A, Seder Robert A, Roederer Mario, Scanga Charles A, Lin Philana Ling, Alter Galit, Fortune Sarah M, Flynn JoAnne L, Lauffenburger Douglas A
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Cell Syst. 2024 Dec 18;15(12):1278-1294.e4. doi: 10.1016/j.cels.2024.10.001. Epub 2024 Nov 5.
Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e., macaques) relative to multivariate features. We find that integrating multiple data modes with MFs helps remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including an experimentally validated B cell depletion that induced network-wide shifts without reducing vaccine protection.
对多模态数据集的分析可以识别生物系统背后的多尺度相互作用,但由于通过未映射的生物网络传播的间接影响,可能会受到虚假连接的困扰。例如,对猕猴的研究表明,静脉注射卡介苗(BCG)可预防结核病,这与各种免疫数据模式的变化相关。为了消除虚假相关性,并在接种疫苗的猕猴的公共多模态数据集(系统血清学、细胞因子和细胞计数)中识别关键的免疫相互作用,我们应用了马尔可夫场(MFs),这是一种数据驱动的方法,通过多变量网络路径解释疫苗效力和免疫相关性,相对于多变量特征,不需要大量样本(即猕猴)。我们发现,将多种数据模式与MFs整合有助于消除虚假连接。最后,我们使用MF预测各种免疫节点处扰动的结果,包括经实验验证的B细胞耗竭,该耗竭诱导了全网络的变化,而不降低疫苗保护效果。