Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States.
J Chem Theory Comput. 2024 Nov 26;20(22):10209-10222. doi: 10.1021/acs.jctc.4c00803. Epub 2024 Nov 6.
Under certain conditions, RNA repeat sequences phase separate, yielding protein-free biomolecular condensates. Importantly, RNA repeat sequences have also been implicated in neurological disorders, such as Huntington's disease. Thus, mapping repeat sequences to their phase behavior, functions, and dysfunctions is an active area of research. However, despite several advances, it remains challenging to characterize the RNA phase behavior at a submolecular resolution. Here, we have implemented a residue-resolution coarse-grained model in LAMMPS─that incorporates both the RNA sequence and structure─to study the clustering propensities of protein-free RNA systems. Importantly, we achieve a multifold speedup in the simulation time compared to previous work. Leveraging this efficiency, we study the clustering propensity of all 20 nonredundant trinucleotide repeat sequences. Our results align with findings from experiments, emphasizing that canonical base-pairing and G-U wobble pairs play dominant roles in regulating cluster formation of RNA repeat sequences. Strikingly, we find strong entropic contributions to the stability and composition of RNA clusters, which is demonstrated for single-component RNA systems as well as binary mixtures of trinucleotide repeats. Additionally, we investigate the clustering behaviors of trinucleotide (odd) repeats and their quadranucleotide (even) counterparts. We observe that odd repeats exhibit stronger clustering tendencies, attributed to the presence of consecutive base pairs in their sequences that are disrupted in even repeat sequences. Altogether, our work extends the set of computational tools for probing RNA cluster formation at submolecular resolution and uncovers physicochemical principles that govern the stability and composition of the resulting clusters.
在某些条件下,RNA 重复序列会分离,产生无蛋白质的生物分子凝聚物。重要的是,RNA 重复序列也与神经退行性疾病有关,如亨廷顿病。因此,将重复序列映射到其相行为、功能和功能障碍是一个活跃的研究领域。然而,尽管取得了一些进展,但仍难以在亚分子分辨率下表征 RNA 的相行为。在这里,我们在 LAMMPS 中实现了一个残基分辨率的粗粒模型,该模型既包含 RNA 序列又包含 RNA 结构,以研究无蛋白质的 RNA 系统的聚类倾向。重要的是,与之前的工作相比,我们在模拟时间上实现了多倍的加速。利用这种效率,我们研究了所有 20 个非冗余三核苷酸重复序列的聚类倾向。我们的结果与实验结果一致,强调了规范的碱基配对和 G-U 摆动对调节 RNA 重复序列的聚类形成起着主导作用。引人注目的是,我们发现 RNA 簇的稳定性和组成具有很强的熵贡献,这在单组分 RNA 系统以及三核苷酸重复的二元混合物中都得到了证明。此外,我们还研究了三核苷酸(奇数)重复及其四核苷酸(偶数)对应物的聚类行为。我们观察到奇数重复表现出更强的聚类倾向,这归因于它们序列中连续碱基对的存在,而偶数重复序列中的这些碱基对被破坏。总的来说,我们的工作扩展了用于探测亚分子分辨率下 RNA 簇形成的计算工具集,并揭示了控制形成的簇的稳定性和组成的物理化学原理。