Tan Daniel, Aierken Dilimulati, Joseph Jerelle A
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
bioRxiv. 2025 Mar 27:2025.03.25.645354. doi: 10.1101/2025.03.25.645354.
Biomolecular condensates are typically maintained by networks of molecular interactions, with canonical examples including those formed by prion-like low complexity domains (LCDs) of proteins. Single-component LCD condensates have been predicted to exhibit small-world network topologies and spatial inhomogeneities in protein compaction. Here, we systematically characterize molecular networks underlying condensates and investigate the relationship between single molecule properties and network topologies. We employ a chemically specific coarse-grained model to probe LCD condensates and generalize our findings by varying sequence hydrophobicity via a generic model that describes "hydrophobic-polar" (HP) polymers. For both model systems, we find that condensates are sustained by small-world network topologies featuring molecular "hubs" and "cliques". Molecular hubs with high network betweenness centrality localize near the centers of condensates and adopt more elongated conformations. In contrast, network cliques-densely interacting molecules that form locally fully connected subgraphs-are bridged by hubs and tend to localize near the condensate interface. Interestingly, we find power-law relationships between the structure and dynamics of individual molecules and network betweenness centrality, which describes molecular connectivity. Thus, our work demonstrates that inhomogeneities in condensate network connectivity can be predicted from single-molecule properties. Furthermore, we find that network cliques have longer lifetimes and that their constituent molecules remain spatially constrained, suggesting a role in shaping interface material properties.
生物分子凝聚物通常由分子相互作用网络维持,典型例子包括由蛋白质的类朊病毒低复杂性结构域(LCD)形成的凝聚物。单组分LCD凝聚物预计会表现出小世界网络拓扑结构以及蛋白质压实中的空间不均匀性。在此,我们系统地表征凝聚物背后的分子网络,并研究单分子性质与网络拓扑结构之间的关系。我们采用化学特异性粗粒度模型来探测LCD凝聚物,并通过一个描述“疏水-极性”(HP)聚合物的通用模型改变序列疏水性来推广我们的发现。对于这两种模型系统,我们发现凝聚物由具有分子“中心节点”和“团簇”的小世界网络拓扑结构维持。具有高网络中介中心性的分子中心节点定位在凝聚物中心附近,并采取更细长的构象。相比之下,网络团簇(形成局部完全连接子图的紧密相互作用分子)由中心节点桥接,并倾向于定位在凝聚物界面附近。有趣的是,我们发现单个分子的结构和动力学与描述分子连通性的网络中介中心性之间存在幂律关系。因此,我们的工作表明,凝聚物网络连通性的不均匀性可以从单分子性质预测。此外,我们发现网络团簇具有更长的寿命,并且其组成分子在空间上保持受限,这表明其在塑造界面材料性质方面的作用。