Paiva Tiago G, Klem Maykel, Silvestre Sara L, Coelho João, Alves Neri, Fortunato Elvira, Cabrita Eurico J, Corvo Marta C
I3N, Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, 2829-516, Portugal.
Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001, Portugal.
ChemSusChem. 2025 Mar 15;18(6):e202401710. doi: 10.1002/cssc.202401710. Epub 2024 Nov 26.
Gel polymer electrolytes (GPEs) are regarded as a promising alternative to conventional electrolytes, combining the advantages of solid and liquid electrolytes. Leveraging the abundance and eco-friendliness of cellulose-based materials, GPEs were produced using methyl cellulose and incorporating various doping agents, either an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr14][TFSI]), its polymeric ionic liquid analogue (Poly(diallyldimethylammonium bis(trifluoromethylsulfonyl)imide) [PDADMA][TFSI]), or an anionically charged backbone polymeric ionic liquid (lithium poly[(4-styrenesulfonyl)(trifluoromethyl(S-trifluoromethylsulfonylimino) sulfonyl) imide] LiP[STFSI]). The ion dynamics and molecular interactions within the GPEs were thoroughly analyzed using Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Heteronuclear Overhauser Enhancement Spectroscopy (HOESY), and Pulsed-Field Gradient Nuclear Magnetic Resonance Diffusion (PFG-NMR). Li transference numbers (t+) were successfully calculated. Our study found that by combining slow-diffusing polymeric ionic liquids (PILs) with fast-diffusing lithium salt, we were able to achieve transference numbers comparable to those of liquid electrolytes, especially with the anionic PIL, LiP[STFSI]. This research highlights the influence of the polymer's nature on lithium-ion transport within GPEs. Additionally, micro supercapacitor (MSC) devices assembled with these GPEs exhibited capacitive behavior. These findings suggest that further optimization of GPE composition could significantly improve their performance, thereby positioning them for application in sustainable and efficient energy storage systems.
凝胶聚合物电解质(GPEs)被认为是传统电解质的一种有前途的替代品,它结合了固体和液体电解质的优点。利用纤维素基材料的丰富性和生态友好性,使用甲基纤维素并掺入各种掺杂剂制备了GPEs,这些掺杂剂可以是离子液体(1-丁基-1-甲基吡咯烷双(三氟甲基磺酰)亚胺[Pyr14][TFSI])、其聚合离子液体类似物(聚(二烯丙基二甲基铵双(三氟甲基磺酰)亚胺)[PDADMA][TFSI])或带负电荷的主链聚合离子液体(聚[(4-苯乙烯磺酰基)(三氟甲基(S-三氟甲基磺酰亚氨基)磺酰)亚胺]锂LiP[STFSI])。使用衰减全反射傅里叶变换红外光谱(ATR-FTIR)、异核Overhauser增强光谱(HOESY)和脉冲场梯度核磁共振扩散(PFG-NMR)对GPEs中的离子动力学和分子相互作用进行了全面分析。成功计算了锂迁移数(t+)。我们的研究发现,通过将扩散缓慢的聚合离子液体(PILs)与扩散快速的锂盐相结合,我们能够实现与液体电解质相当的迁移数,特别是使用阴离子PIL LiP[STFSI]时。这项研究突出了聚合物性质对GPEs中锂离子传输的影响。此外,用这些GPEs组装的微型超级电容器(MSC)器件表现出电容行为。这些发现表明,进一步优化GPEs的组成可以显著提高其性能,从而使其适用于可持续和高效的储能系统。