Suppr超能文献

基于同步的 EEG 和眼动信号融合,以提高解码精度。

Synchronization-based fusion of EEG and eye blink signals for enhanced decoding accuracy.

机构信息

Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany.

出版信息

Sci Rep. 2024 Nov 6;14(1):26918. doi: 10.1038/s41598-024-78542-9.

Abstract

Decoding locomotor tasks is crucial in cognitive neuroscience for understanding brain responses to physical tasks. Traditional methods like EEG offer brain activity insights but may require additional modalities for enhanced interpretative precision and depth. The integration of EEG with ocular metrics, particularly eye blinks, presents a promising avenue for understanding cognitive processes by combining neural and ocular behaviors. However, synchronizing EEG and eye blink activities poses a significant challenge due to their frequently inconsistent alignment. Our study with 35 participants performing various locomotor tasks such as standing, walking, and transversing obstacles introduced a novel methodology, pcEEG+, which fuses EEG principal components (pcEEG) with aligned eye blink data (syncBlink). The results demonstrated that pcEEG+ significantly improved decoding accuracy in locomotor tasks, reaching 78% in some conditions, and surpassed standalone pcEEG and syncBlink methods by 7.6% and 22.7%, respectively. The temporal generalization matrix confirmed the consistency of pcEEG+ across tasks and times. The results were replicated using two driving simulator datasets, thereby confirming the validity of our method. This study demonstrates the efficacy of the pcEEG+ method in decoding locomotor tasks, underscoring the importance of temporal synchronization for accuracy and offering a deeper insight into brain activity during complex movements.

摘要

解码运动任务在认知神经科学中至关重要,有助于理解大脑对身体任务的反应。传统方法如 EEG 可提供脑活动见解,但可能需要额外的模态来提高解释的准确性和深度。EEG 与眼动指标(特别是眨眼)的整合为理解认知过程提供了一个有前途的途径,可将神经和眼动行为结合起来。然而,由于它们的对齐经常不一致,因此同步 EEG 和眨眼活动是一个重大挑战。我们的研究有 35 名参与者进行了各种运动任务,如站立、行走和穿越障碍物,引入了一种新的方法 pcEEG+,它将 EEG 主成分(pcEEG)与对齐的眨眼数据(syncBlink)融合在一起。结果表明,pcEEG+显著提高了运动任务的解码准确性,在某些情况下达到了 78%,分别比独立的 pcEEG 和 syncBlink 方法高出 7.6%和 22.7%。时间综合矩阵证实了 pcEEG+在任务和时间上的一致性。使用两个驾驶模拟器数据集复制了这些结果,从而证实了我们方法的有效性。这项研究表明了 pcEEG+方法在解码运动任务中的功效,强调了时间同步对于准确性的重要性,并提供了对复杂运动期间大脑活动的更深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5371/11541762/6118c25eb192/41598_2024_78542_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验