Suppr超能文献

通过声学非厄米纹理实现高阶拓扑约束工程

Engineering Higher-Order Topological Confinement via Acoustic Non-Hermitian Textures.

作者信息

Hu Bolun, Zhang Zhiwang, Liu Yimin, Liao Danwei, Zhu Yuanzhou, Zhang Haixiao, Cheng Ying, Liu Xiaojun, Christensen Johan

机构信息

Department of Physics, MOE Key Laboratory of Modern Acoustics, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Physical Science Research Center, Nanjing University, Nanjing, 210093, China.

School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi, 214122, China.

出版信息

Adv Mater. 2024 Dec;36(50):e2406567. doi: 10.1002/adma.202406567. Epub 2024 Nov 6.

Abstract

Higher-order topological insulators are a newly unveiled category of topological materials, distinguished by their exceptional characteristics absent in conventional topological insulators, e.g., 1D hinge states, or zero-dimensional corner states, for instance. Adding attenuating or amplifying components manifest even richer and more intricate non-Hermitian topological properties. While losses, for the most part, come for free, decorating topological systems with the gain counterpart poses significant challenges. Here, a non-Hermitian second-order topological insulator (SOTI) is constructed for a sonic demonstration, by bestowing a cavity-based lattice both with electro-thermoacoustic gain and loss. The inner cavity walls are decorated with electrically biased carbon nanotube films to be able to manipulate spatially and in strength, a non-Hermitian response at will. These measurements demonstrate that this flexibility allows us to design highly unconventional interface and corner confining topologies by decisively engineering gain and loss textures within the unit cell. It is foreseen that the advances may enable new avenues for energy harvesting and fundamental understanding in condensed matter and classical topological physics.

摘要

高阶拓扑绝缘体是一类新发现的拓扑材料,其独特特性有别于传统拓扑绝缘体,例如存在一维铰链态或零维角态。添加衰减或放大组件会展现出更为丰富和复杂的非厄米拓扑性质。虽然损耗在很大程度上是自然存在的,但在拓扑系统中引入增益组件却面临重大挑战。在此,通过赋予基于腔体的晶格电 - 热声增益和损耗,构建了一种用于声学演示的非厄米二阶拓扑绝缘体(SOTI)。内腔壁装饰有带电偏置的碳纳米管薄膜,以便能够在空间上和强度上随意操控非厄米响应。这些测量结果表明,这种灵活性使我们能够通过在晶胞内果断设计增益和损耗纹理来设计高度非传统的界面和角限制拓扑结构。可以预见,这些进展可能为凝聚态物质和经典拓扑物理学中的能量收集及基础理解开辟新途径。

相似文献

2
Non-Hermitian topological whispering gallery.非厄米拓扑声子回廊。
Nature. 2021 Sep;597(7878):655-659. doi: 10.1038/s41586-021-03833-4. Epub 2021 Sep 29.
3
Second-Order Topological Phases in Non-Hermitian Systems.非厄米系统中的二阶拓扑相。
Phys Rev Lett. 2019 Feb 22;122(7):076801. doi: 10.1103/PhysRevLett.122.076801.
4
Acoustic higher-order topological insulator on a kagome lattice.Kagome晶格上的声学高阶拓扑绝缘体
Nat Mater. 2019 Feb;18(2):108-112. doi: 10.1038/s41563-018-0251-x. Epub 2018 Dec 31.
5
Non-Hermitian Sonic Second-Order Topological Insulator.非厄米声子二阶拓扑绝缘体
Phys Rev Lett. 2019 May 17;122(19):195501. doi: 10.1103/PhysRevLett.122.195501.
8
Higher-Order Topological Corner States Induced by Gain and Loss.高阶拓扑角态的增益与损耗诱导。
Phys Rev Lett. 2019 Aug 16;123(7):073601. doi: 10.1103/PhysRevLett.123.073601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验