Driscoll Nicolette, Antonini Marc-Joseph, Cannon Taylor M, Maretich Pema, Olaitan Greatness, Van Valerie Doan Phi, Nagao Keisuke, Sahasrabudhe Atharva, Paniagua Emmanuel Vargas, Frey Ethan J, Kim Ye Ji, Hunt Sydney, Hummel Melissa, Mupparaju Sanju, Jasanoff Alan, Venton B Jill, Anikeeva Polina
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
The University of Virginia, Charlottesville, VA, 22904, USA.
Adv Mater. 2024 Nov 6:e2408154. doi: 10.1002/adma.202408154.
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
神经元活动的记录与调控有助于研究健康和疾病状态下的脑功能。虽然转化神经科学依赖于电记录和调控技术,但啮齿动物模型的机制研究利用了光学方法(如光遗传学和荧光指示剂成像)的基因精准性。除了电信号转导,神经元还产生和接收多种化学信号,这促使人们开发用于探测和调控神经化学的工具。尽管在过去十年中已经出现了大量用于电生理学、光遗传学、化学传感和光学记录的技术,但在单个平台上整合这些模式仍然具有挑战性。这项工作利用材料选择和聚合光纤拉伸技术,实现了在单根光纤内进行神经记录、电刺激、光遗传学、光纤光度测定、药物和基因递送以及神经递质的伏安记录。这些由聚合物和非磁性碳基导体组成的光纤与磁共振成像兼容,能够同时进行刺激和全脑监测。通过与小鼠的腹侧被盖区和伏隔核连接,并表征一种兴奋性药物的神经生理效应,在中脑边缘奖赏通路的研究中证明了它们的实用性。这项研究突出了这些光纤在机制研究和转化研究中探测多个脑区电、光和化学信号的潜力。