Suppr超能文献

用于预测恶性黑色素瘤总生存期的机器学习增强型转移相关T细胞标记基因特征

Machine Learning-enhanced Signature of Metastasis-related T Cell Marker Genes for Predicting Overall Survival in Malignant Melanoma.

作者信息

Fan Chaoxin, Li Yimeng, Jiang Aimin, Zhao Rui

机构信息

Department of Oncology, Xi'an People's Hospital (Xi'an Fourth Hospital).

Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi.

出版信息

J Immunother. 2025 Apr 1;48(3):97-108. doi: 10.1097/CJI.0000000000000544. Epub 2024 Nov 7.

Abstract

In this study, we aimed to investigate disparities in the tumor immune microenvironment (TME) between primary and metastatic malignant melanoma (MM) using single-cell RNA sequencing (scRNA- seq ) and to identify metastasis-related T cell marker genes (MRTMGs) for predicting patient survival using machine learning techniques. We identified 6 distinct T cell clusters in 10×scRNA-seq data utilizing the Uniform Manifold Approximation and Projection (UMAP) algorithm. Four machine learning algorithms highlighted SRGN, PMEL, GPR143, EIF4A2, and DSP as pivotal MRTMGs, forming the foundation of the MRTMGs signature. A high MRTMGs signature was found to be correlated with poorer overall survival (OS) and suppression of antitumor immunity in MM patients. We developed a nomogram that combines the MRTMGs signature with the T stage and N stage, which accurately predicts 1-year, 3-year, and 5-year OS probabilities. Furthermore, in an immunotherapy cohort, a high MRTMG signature was associated with an unfavorable response to anti-programmed death 1 (PD-1) therapy. In conclusion, primary and metastatic MM display distinct TME landscapes with different T cell subsets playing crucial roles in metastasis. The MRTMGs signature, established through machine learning, holds potential as a valuable biomarker for predicting the survival of MM patients and their response to anti-PD-1 therapy.

摘要

在本研究中,我们旨在使用单细胞RNA测序(scRNA-seq)研究原发性和转移性恶性黑色素瘤(MM)之间肿瘤免疫微环境(TME)的差异,并使用机器学习技术识别与转移相关的T细胞标记基因(MRTMGs)以预测患者生存情况。我们利用均匀流形近似和投影(UMAP)算法在10×scRNA-seq数据中识别出6个不同的T细胞簇。四种机器学习算法突出显示SRGN、PMEL、GPR143、EIF4A2和DSP作为关键的MRTMGs,构成了MRTMGs特征的基础。发现高MRTMGs特征与MM患者较差的总生存期(OS)和抗肿瘤免疫抑制相关。我们开发了一种列线图,将MRTMGs特征与T分期和N分期相结合,可准确预测1年、3年和5年的OS概率。此外,在一个免疫治疗队列中,高MRTMG特征与抗程序性死亡1(PD-1)治疗的不良反应相关联。总之,原发性和转移性MM表现出不同的TME格局,不同的T细胞亚群在转移中起关键作用。通过机器学习建立的MRTMGs特征作为预测MM患者生存及其对抗PD-1治疗反应的有价值生物标志物具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33ae/11875406/f758e75b675b/cji-48-097-g001.jpg

相似文献

本文引用的文献

6
Cancer statistics, 2023.癌症统计数据,2023 年。
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验