Suppr超能文献

DeepGR:一种基于糖酵解放射组学的非小细胞肺癌深度学习预后模型。

DeepGR: a deep-learning prognostic model based on glycolytic radiomics for non-small cell lung cancer.

作者信息

Fu Tingting, Yan Peipei, Zhou Lina, Lu Zhihua, Liu Ao, Ding Xiao, Vannucci Jacopo, Hofman Paul, Swierniak Andrzej, Szurowska Edyta, Zhang Junjun, Li Shicheng

机构信息

Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China.

Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Transl Lung Cancer Res. 2024 Oct 31;13(10):2746-2760. doi: 10.21037/tlcr-24-716. Epub 2024 Oct 17.

Abstract

BACKGROUND

Glycolysis proved to have a prognostic value in lung cancer; however, to identify glycolysis-related genomic markers is expensive and challenging. This study aimed at identifying glycolysis-related computed tomography (CT) radiomics features to develop a deep-learning prognostic model for non-small cell lung cancer (NSCLC).

METHODS

The study included 274 NSCLC patients from cohorts of The Second Affiliated Hospital of Soochow University (SZ; n=64), the Cancer Genome Atlas (TCGA)-NSCLC dataset (n=74), and the Gene Expression Omnibus dataset (n=136). Initially, the glycolysis enrichment scores were evaluated using a single-sample gene set enrichment analysis, and the cut-off values were optimized to investigate the prognostic potential of glycolysis genes. Radiomic features were then extracted using LIFEx software. The least absolute reduction and selection operator (LASSO) algorithm was employed to determine the glycolytic CT radiomics features. A deep-learning prognostic model was constructed by integrating CT radiomics and clinical features. The biological functions of the model were analyzed by incorporating RNA sequencing data.

RESULTS

Kaplan-Meier curves indicated that elevated glycolysis levels were associated with poorer survival outcomes. The LASSO algorithm identified 11 radiomic features that were then selected for inclusion in the deep-learning model. They have shown significant discrimination capability in assessing glycolysis status, achieving an area under the curve value of 0.8442. The glycolysis-based radiomics deep-learning model was named the DeepGR model. This model was able to effectively predict the clinical outcomes of NSCLC patients with AUCs of 0.8760 and 0.8259 in the SZ and TCGA cohorts, respectively. High-risk DeepGR scores were strongly associated with poor overall survival, resting memory CD4 T cells, and a high response to programmed cell death protein 1 immunotherapy.

CONCLUSIONS

The DeepGR model effectively predicted the prognosis of NSCLC patients.

摘要

背景

糖酵解已被证明在肺癌中具有预后价值;然而,识别与糖酵解相关的基因组标志物既昂贵又具有挑战性。本研究旨在识别与糖酵解相关的计算机断层扫描(CT)影像组学特征,以开发一种用于非小细胞肺癌(NSCLC)的深度学习预后模型。

方法

本研究纳入了来自苏州大学附属第二医院队列(SZ;n = 64)、癌症基因组图谱(TCGA)-NSCLC数据集(n = 74)和基因表达综合数据库(n = 136)的274例NSCLC患者。最初,使用单样本基因集富集分析评估糖酵解富集分数,并优化临界值以研究糖酵解基因预后潜力。然后使用LIFEx软件提取影像组学特征。采用最小绝对收缩和选择算子(LASSO)算法确定糖酵解CT影像组学特征。通过整合CT影像组学和临床特征构建深度学习预后模型。通过纳入RNA测序数据分析该模型的生物学功能。

结果

Kaplan-Meier曲线表明,糖酵解水平升高与较差的生存结果相关。LASSO算法识别出11个影像组学特征,随后将其纳入深度学习模型。它们在评估糖酵解状态方面显示出显著的区分能力,曲线下面积值达到0.8442。基于糖酵解的影像组学深度学习模型被命名为DeepGR模型。该模型能够有效预测NSCLC患者的临床结局,在SZ队列和TCGA队列中的曲线下面积分别为0.8760和0.8259。高风险DeepGR评分与较差的总生存期、静息记忆CD4 T细胞以及对程序性细胞死亡蛋白1免疫治疗的高反应性密切相关。

结论

DeepGR模型有效预测了NSCLC患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b71/11535831/d46d2b200bae/tlcr-13-10-2746-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验