Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.
Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
Cancer Imaging. 2024 Jan 2;24(1):1. doi: 10.1186/s40644-023-00623-1.
Brain metastasis (BM) is most common in non-small cell lung cancer (NSCLC) patients. This study aims to enhance BM risk prediction within three years for advanced NSCLC patients by using a deep learning-based segmentation and computed tomography (CT) radiomics-based ensemble learning model.
This retrospective study included 602 stage IIIA-IVB NSCLC patients, 309 BM patients and 293 non-BM patients, from two centers. Patients were divided into a training cohort (N = 376), an internal validation cohort (N = 161) and an external validation cohort (N = 65). Lung tumors were first segmented by using a three-dimensional (3D) deep residual U-Net network. Then, a total of 1106 radiomics features were computed by using pretreatment lung CT images to decode the imaging phenotypes of primary lung cancer. To reduce the dimensionality of the radiomics features, recursive feature elimination configured with the least absolute shrinkage and selection operator (LASSO) regularization method was applied to select the optimal image features after removing the low-variance features. An ensemble learning algorithm of the extreme gradient boosting (XGBoost) classifier was used to train and build a prediction model by fusing radiomics features and clinical features. Finally, Kaplan‒Meier (KM) survival analysis was used to evaluate the prognostic value of the prediction score generated by the radiomics-clinical model.
The fused model achieved area under the receiver operating characteristic curve values of 0.91 ± 0.01, 0.89 ± 0.02 and 0.85 ± 0.05 on the training and two validation cohorts, respectively. Through KM survival analysis, the risk score generated by our model achieved a significant prognostic value for BM-free survival (BMFS) and overall survival (OS) in the two cohorts (P < 0.05).
Our results demonstrated that (1) the fusion of radiomics and clinical features can improve the prediction performance in predicting BM risk, (2) the radiomics model generates higher performance than the clinical model, and (3) the radiomics-clinical fusion model has prognostic value in predicting the BMFS and OS of NSCLC patients.
脑转移(BM)是 NSCLC 患者中最常见的。本研究旨在通过使用基于深度学习的分割和 CT 放射组学集成学习模型,提高三年内晚期 NSCLC 患者发生 BM 的风险预测。
这是一项回顾性研究,纳入了来自两个中心的 602 例 IIIA-IVB 期 NSCLC 患者,其中 309 例发生 BM,293 例未发生 BM。患者被分为训练队列(n=376)、内部验证队列(n=161)和外部验证队列(n=65)。使用三维(3D)深度残差 U-Net 网络对肺肿瘤进行分割。然后,使用预处理的肺 CT 图像计算总共 1106 个放射组学特征,以解码原发性肺癌的成像表型。为了降低放射组学特征的维度,应用递归特征消除(RFE)与最小绝对收缩和选择算子(LASSO)正则化方法相结合,在去除低方差特征后选择最佳的图像特征。采用极端梯度提升(XGBoost)分类器的集成学习算法,通过融合放射组学特征和临床特征来训练和建立预测模型。最后,采用 Kaplan-Meier(KM)生存分析评估放射组学-临床模型生成的预测评分的预后价值。
融合模型在训练组和两个验证组中的受试者工作特征曲线下面积分别为 0.91±0.01、0.89±0.02 和 0.85±0.05。通过 KM 生存分析,我们的模型生成的风险评分在两个队列中均对 BM 无复发生存(BMFS)和总生存(OS)具有显著的预后价值(P<0.05)。
我们的研究结果表明:(1)放射组学与临床特征的融合可以提高预测 BM 风险的预测性能;(2)放射组学模型的性能优于临床模型;(3)放射组学-临床融合模型具有预测 NSCLC 患者 BMFS 和 OS 的预后价值。